Interview with Gabriela Gonzalez, Louisiana State University Boyd Professor in the Department of Physics and Astronomy. Gonzalez explains how the pandemic has slowed down data analysis for LIGO, and she recounts her childhood in Cordoba, Argentina. She describes her early interests in science and her physics education as an undergraduate in Cordoba. Gonzalez explains the circumstances that led to her graduate studies at Syracuse University where she studied relativity under the direction of Peter Saulson, and where she first became involved with LIGO. She discusses her postdoctoral appointment at MIT to work in Rai Weiss’s group, and she explains LIGO’s dual goals of detecting gravitational waves and building precision instruments toward that end. Gonzalez explains her decision to join the faculty at Penn State and she describes the site selection that led to the detection facility in Livingston, Louisiana. She describes the necessary redundancy of the LIGO detectors at Livingston and Hanford, Washington, and the importance of “locking” the mirrors on the detectors. Gonzalez describes the overall scene at LIGO in the months up to the detection and the theoretical guidance that improved the likelihood of success. She describes the intensive communication and data analysis to confirm the detection prior to the announcement, and she explains how she felt honored as part of the overall Nobel Prize award and subsequent celebration. Gonzalez describes LIGO’s work in the current post-detection period, and her own focus on diagnostics of the data, and she explains why this work, and the constant concern in missing something important, can be stressful. At the end of the interview, Gonzalez surveys what mysteries LIGO can, and cannot, solve, and she conveys optimism for LIGO’s long-term prospects to continue to push fundamental discovery.
Interview with Phillip James Edwin Peebles, Albert Einstein Professor of Science, Emeritus, at Princeton University. Peebles describes his enjoyment in pursuing the issues in cosmology that are most interesting to him in retirement and he explains his appreciation for the importance of taking a sociological perspective to science. He describes his first exposure to cosmology as a field to specialize in during graduate school and he surveys some of the experiments and observational advances that have propelled theoretical cosmology. Peebles recounts his childhood in Manitoba, and he discusses his undergraduate education at the University of Manitoba. He describes arriving at Princeton in 1958 and how he became a student of Bob Dicke's. Peebles discusses his thesis research on the possibility that the fine-structure constant might be evolving. He describes staying at (and never leaving) Princeton for his postdoctoral work, and some of the exciting promises of infrared astronomy and radio astronomy. Peebles conveys the simple process of joining the faculty, and he describes the developments leading to the prediction of the cosmic microwave background. He discusses the trend of particle theorists pursuing questions in cosmology, and he reflects on the impact of the Vietnam era on Princeton. Peebles conveys the significance of the introduction of cold dark matter and his perspective on the inflationary theory of the universe. He explains why LambdaCDM has become standard in the field and why COBE was so important. Peebles surveys the many observational projects that are currently being planned, and he reflects on the "buzz" that he felt in advance of winning the Nobel Prize. He describes how his life has been affected by this honor, and he reflects on how the Department of Physics has changed over the course of his long career. At the end of the interview, Peebles emphasizes his interest in remaining close both to theory and experimentation, and he shares his sense of curiosity at what clues might be found from the epoch of light element production in the very early universe.
Interview with Gerard 't Hooft, University Professor of Physics (Emeritus) at Utrecht University in the Netherlands. 't Hooft considers the possibility that the g-2 muon anomaly experiment at Fermilab is suggestive of new physics, and he reflects broadly on the current shortcomings in our understanding of quantum mechanics and general relativity. 't Hooft recounts his childhood in postwar Holland and the influence of his great uncle, the Nobel Prize winner Frits Zernike and his uncle, the theoretical physicist Nico van Kampen. He describes his undergraduate education at Utrecht University where he got to know Martinus Veltman, with whom he would pursue a graduate degree and ultimately share the Nobel Prize. 't Hooft explains the origins of what would become the Standard Model and the significance of Yang-Mills fields and Ken Wilson’s theory of renormalization. He describes Veltman’s pioneering use of computers to calculate algebraic manipulations and why questions of scaling were able to be raised for the first time. 't Hooft discusses his postdoctoral appointment at CERN, his ideas about grouping Feynman diagrams together, and how he became involved in quantum gravity research and Bose condensation. He explains the value in studying instantons for broader questions in QCD, the significance of Hawking’s work on the black hole information paradox, the holographic principle, and why he has diverged with string theorists. 't Hooft describes being present at the start of supersymmetry, and the growing “buzz” that culminated in winning the Nobel Prize. He describes his overall interest in the past twenty years in thinking more deeply about quantum mechanics and he places the foundational disagreement between Einstein and Bohr in historical context. At the end of the interview, 't Hooft surveys the limitations that prevent us from understanding how to merge quantum mechanics and general relativity and why this will require an understanding of how to relate the set of all integer numbers to phenomena of the universe.
Interview with Pierre Ramond, Distinguished Professor of Physics at the University of Florida. Ramond recounts childhood in Paris, he describes his family’s experiences during World War II, and he explains that opportunities that led to his education in electrical engineering at the New Jersey Institute of Technology. He discusses his graduate degree in physics at Syracuse University to focus on general relativity and his first exposure to the earliest iterations of string theory. Ramond describes his work at Fermilab on Veneziano modelling, his postdoctoral research at Yale, and his subsequent work at Los Alamos. He describes Gell-Mann’s interest in grand unified theories and the influence of Ken Wilson. Ramond explains the excitement regarding the muon anomaly experiment at Fermilab, and he narrates his decision to join the faculty at the University of Florida. He explains how the department’s stature has risen over the past forty years, and he reflects on his involvement with the superstring revolution in 1984. Ramond describes the difference between effective and fundamental theories in particle physics and he conveys the productive intellectual ferment at the annual Aspen conferences. He describes his service work on the faculty senate and he describes his leadership position at the APS during the discovery of the Higgs. Ramond explains why he thinks supersymmetry would have been detected at a completed SSC and he reflects on receiving the Dirac medal in 2020. At the end of the interview, he discusses Einstein’s misgivings on quantum mechanics, he imagines how string theory might be testable, and he explains why he remains interested in CP violation.
Interview with Stuart Shapiro, Professor of Physics and Astronomy at the University of Illinois at Urbana-Champaign. Shapiro discusses the relationship between physics and astronomy at Illinois and the shifting boundaries between cosmology, astrophysics, and astronomy. He recounts his childhood in Connecticut and his fascination with the space race. Shapiro describes his undergraduate experience at Harvard in the late 1960s and the import of the discovery of the cosmic wave background. He explains his interest in general relativity as the motivating factor for his choice of Princeton for graduate work, where he worked under the direction of Jim Peebles on gas accretion onto black holes. Shapiro describes his postdoctoral appointment at Cornell and the formative collaboration he developed with Saul Teukolsky. He describes the computational advances that propelled the field of numerical relativity and how his interactions with Kip Thorne provided an early entrée to the LIGO endeavor. Shapiro explains how he and Teukolsky challenged the cosmic censorship hypothesis and how Penrose responded to this challenge. He explains his decision to join the faculty at Illinois where he continued to work on neutrino astrophysics and the prospects for observation of hypermassive neutron stars. Shapiro explains his motivations in writing "Numerical Relativity" and he compares his reactions to the detection of gravitational waves with LIGO and the imaging of a black hole with the Event Horizon Telescope. At the end of the interview, Shapiro surveys his current interests in the dynamical problems associated with dark matter. He also conveys his deep love of sports and some unlikely coincidences he has experienced in his many years of being a fan.
Interview with Stephen Fulling, Professor of Mathematics and of Physics and Astronomy at Texas A&M University. Fulling explains the history of why his primary academic department is math and how the field of general relativity became more directly relevant to observational cosmology in the 1960s and 1970s. He recounts his middle-class upbringing in Indiana and his dual interests in math and physics which he developed during his undergraduate years at Harvard. Fulling discusses his graduate work at Princeton, where Arthur Wightman supervised his research. He explains the contemporary controversy over the Casimir effect and his interest in the Minkowski vacuum, and he discusses his postdoctoral appointment at UW-Milwaukee. Fulling describes his work on Riemannian spacetime and Robertson-Walker spacetime, and he explains the opportunity that led him to the University of London, where black holes was a focus of research. He describes meeting Paul Davies and Chris Isham and how the field started to take black holes seriously as observable entities in the 1980s. Fulling explains his longstanding interest in asymptotic expansion and he surveys more recent advances in the Casimir effect. He reflects on the Unruh effect as it approaches its 50th anniversary, and he addresses the disagreement on whether or not it has been observed and whether the Unruh effect implies Unruh radiation. At the end of the interview, Fulling discusses his current interests in the soft wall problem and acceleration radiation, and he explains his ongoing interest in seeing advances in research on Casimir energy.
Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.
In this interview, David Zierler, Oral Historian for AIP, interviews Kenneth Nordtvedt, Professor Emeritus of Physics at Montana State University. Nordtvedt recounts his childhood in suburban Chicago and he describes how he discovered his early talents in math and science. He discusses his undergraduate experience at MIT and he explains the formative impact that Sputnik had on his scientific interests. Nordtvedt discusses his graduate work at Stanford, where he studied with Marshall Sparks, and he explains his decision to leave the program early to return to MIT where he worked in the Instrumentation Lab. Nordtvedt describes his dissertation work at Stanford on the coupling of fermions to bosons, and his interest in pursuing research that would be mutually beneficial to elementary particle physics and solid state physics. He describes his postgraduate work on bubble chambers at Los Alamos, and he explains the origins of his interest in general relativity and the influence of Leonard Schiff. Nordtvedt describes his teaching and research career at Montana State, and his long-standing collaborations with NASA. He discusses some of his politically-oriented motivations to retire early, and at the end of the interview, Nordtvedt describes some of the contract physics work he has done in recent years.
In this interview, David Zierler, Oral Historian for AIP, interviews Cliff Will, Distinguished Professor of Physics at the University of Florida. He recounts his childhood in Ontario, Canada, and explains his decision to enroll at McMaster University, which was both nearby and offered an excellent physics program. He describes his studies with Bertram Brockhouse and how he developed his skills and interests in theory. Will explains his early impressions of Caltech, and how different California felt in the late 1960s. He describes his graduate research in general relativity under the direction of Kip Thorne, and he explains the significance of his calculation of the n-body equations of motion, which was the first post-Newtonian approximation of general relativity. Will explains the import of recent experimental advances in general relativity and how this advanced theoretical work. He describes his postdoctoral research at the Fermi Institute and his attraction at the concept of working with Chandrasekhar. He explains his decision to join the faculty at Stanford, and the state of the field in general relativity and gravitational radiation in the early 1970s. Will describes the circumstances leading to his work at Washington University and the research he did at the McDonnell Center for Space Sciences. He discusses his service work for the National Research Council and his advisory position on the Stanford-NASA space mission called Gravity Probe-B. Will describes his interest in conveying scientific concepts to the broader public, and the excitement he felt in joining the LIGO collaboration. He discusses his recent research interests at the University of Florida and his ongoing collaborations in France. At the end of the interview, Will reflects on what has been confirmed and improved in the field of general relativity since the time of Einstein.
In this interview, David Zierler, Oral Historian for AIP, interviews Lowell Brown, emeritus professor of physics at the University of Washington. Brown recounts his childhood growing up on a farm in California and his early interests in nuclear physics. He describes his undergraduate experience at Berkeley, where he worked with Burton Moyer’s group in the radiation lab. Brown describes his decision to go to Harvard for graduate school, and the considerations leading to his focus on theoretical work with Julian Schwinger. He describes his dissertation work on a field theory description of elementary particle decay. Brown recounts his postdoctoral research at the University of Rome and at CERN and he discusses his collaborative work at Imperial College. He explains the circumstances leading to his faculty position at Yale, and his decision to join the physics department at UW. Brown provides an institutional history of the department and the major research projects he took on during his career, including the 3-by-3 matrix, the g-2, experiment, quadratic Brownian motion, general relativity, and quantum field theory, about which he wrote a major book in 1994. At the end of the interview, Brown discusses his work at Los Alamos, where he has worked on theoretical research as a consultant, and he describes his lifelong passion for Ferraris.