Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.
Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.
Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.
Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.
A thorough, reflective survey of the life and work of this theoretical astrophysicist. Early life and education in India, 1910-1930, and experiences at Trinity College, University of Cambridge, 1930-1937, with comments on Edward A. Milne and Arthur S. Eddington; debate with the latter over collapse of white dwarf stars. Move to U.S. in 1937, with comments on the situation at Harvard and Princeton Universities since the 1930s, and especially on Henry N. Russell, John Von Neumann, and Martin Schwarzschild. Social context at University of Chicago and Yerkes Observatory since 1937, with remarks on Gerard Kuiper, Otto Struve, Bengt Strömgren, etc. Work as teacher there, and as editor of Astrophysical Journal from 1951 until it was given to the American Astronomical Society in 1971. Scientific work resulting in Introduction to the Study of Stellar Structure (1939) and publications on stochastic processes in galaxy and in general, radiative transfer, interstellar polarization, hydrodynamics and hydromagnetics (including experimental checks). Recent work on general relativity and Kerr metric; comments on cosmology. General remarks on the social structure of astronomy and its cultural role. Extended discussion of his way of functioning as a theorist. Also prominently mentioned are: Hans Albrecht Bethe, Paul Adrien Maurice Dirac, Enrico Fermi, Ralph Howard Fowler, George Gamow, Robert Hutchins, James Jeans, Alfred H. Joy, William Wilson Morgan, Harry Hemley Plaskett, Sir Chandrasekhar Vankata Raman, Ernest Rutherford, Harlow Shapley, Arnold Johannes Wilhelm Sommerfeld, Lyman Spitzer, Eugene Paul Wigner; Aberdeen Proving Ground, American Astronomical Society, Presidency College (Madras), United States Office of Naval Research, and United States Proving Ground at Aberdeen MD Ballistics Research Laboratory.
A thorough, reflective survey of the life and work of this theoretical astrophysicist. Early life and education in India, 1910-1930, and experiences at Trinity College, University of Cambridge, 1930-1937, with comments on Edward A. Milne and Arthur S. Eddington; debate with the latter over collapse of white dwarf stars. Move to U.S. in 1937, with comments on the situation at Harvard and Princeton Universities since the 1930s, and especially on Henry N. Russell, John Von Neumann, and Martin Schwarzschild. Social context at University of Chicago and Yerkes Observatory since 1937, with remarks on Gerard Kuiper, Otto Struve, Bengt Strömgren, etc. Work as teacher there, and as editor of Astrophysical Journal from 1951 until it was given to the American Astronomical Society in 1971. Scientific work resulting in Introduction to the Study of Stellar Structure (1939) and publications on stochastic processes in galaxy and in general, radiative transfer, interstellar polarization, hydrodynamics and hydromagnetics (including experimental checks). Recent work on general relativity and Kerr metric; comments on cosmology. General remarks on the social structure of astronomy and its cultural role. Extended discussion of his way of functioning as a theorist. Also prominently mentioned are: Hans Albrecht Bethe, Paul Adrien Maurice Dirac, Enrico Fermi, Ralph Howard Fowler, George Gamow, Robert Hutchins, James Jeans, Alfred H. Joy, William Wilson Morgan, Harry Hemley Plaskett, Sir Chandrasekhar Vankata Raman, Ernest Rutherford, Harlow Shapley, Arnold Johannes Wilhelm Sommerfeld, Lyman Spitzer, Eugene Paul Wigner; Aberdeen Proving Ground, American Astronomical Society, Presidency College (Madras), United States Office of Naval Research, and United States Proving Ground at Aberdeen MD Ballistics Research Laboratory.
A thorough, reflective survey of the life and work of this theoretical astrophysicist. Early life and education in India, 1910-1930, and experiences at Trinity College, University of Cambridge, 1930-1937, with comments on Edward A. Milne and Arthur S. Eddington; debate with the latter over collapse of white dwarf stars. Move to U.S. in 1937, with comments on the situation at Harvard and Princeton Universities since the 1930s, and especially on Henry N. Russell, John Von Neumann, and Martin Schwarzschild. Social context at University of Chicago and Yerkes Observatory since 1937, with remarks on Gerard Kuiper, Otto Struve, Bengt Strömgren, etc. Work as teacher there, and as editor of Astrophysical Journal from 1951 until it was given to the American Astronomical Society in 1971. Scientific work resulting in Introduction to the Study of Stellar Structure (1939) and publications on stochastic processes in galaxy and in general, radiative transfer, interstellar polarization, hydrodynamics and hydromagnetics (including experimental checks). Recent work on general relativity and Kerr metric; comments on cosmology. General remarks on the social structure of astronomy and its cultural role. Extended discussion of his way of functioning as a theorist. Also prominently mentioned are: Hans Albrecht Bethe, Paul Adrien Maurice Dirac, Enrico Fermi, Ralph Howard Fowler, George Gamow, Robert Hutchins, James Jeans, Alfred H. Joy, William Wilson Morgan, Harry Hemley Plaskett, Sir Chandrasekhar Vankata Raman, Ernest Rutherford, Harlow Shapley, Arnold Johannes Wilhelm Sommerfeld, Lyman Spitzer, Eugene Paul Wigner; Aberdeen Proving Ground, American Astronomical Society, Presidency College (Madras), United States Office of Naval Research, and United States Proving Ground at Aberdeen MD Ballistics Research Laboratory.
Indiana University Department of Astronomy, Bloomington, Indiana
Abstract
Early life and education in Manchester; World War I; spectroscopy work at Oxford under Frederick A. Lindemann; visits to Gottingen and Berlin in 1920s; ideas on stellar energy source and stellar structure; work and teaching at Rutgers (1929-1937); World War II research on de-Gaussing, ballistics; moves to Greenwich, then Herstmonceaux observatories; their administration and instruments; solar eclipse work; general relativity theory; return to U.S. Also prominently mentioned are: Herbert Jefcoate Atkinson, Irmin von Holton Atkinson, Mary Kathleen Jane Ashe Atkinson, Niels Henrik David Bohr, John Edward Campbell, Arthur Stanley Eddington, George Gamow, I. O. Griffith, Fritz G. Houtermans, Edwin Powell Hubble, James Hopwood Jeans, H. Spencer Jones, Walther Nernst, Henry Norris Russell, Frederick Soddy, Richard van der Riet Woolley; Aberdeen Proving Ground, Balliol College of University of Oxford, Great Britain Admiralty, Indiana University, Royal Astronomical Society, Royal Greenwich Observatory, United States Proving Ground at Aberdeen, MD Ballistics Research Laboratory, and Universitat Gottingen Observatory.