Holography

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Gerard 't Hooft, University Professor of Physics (Emeritus) at Utrecht University in the Netherlands. 't Hooft considers the possibility that the g-2 muon anomaly experiment at Fermilab is suggestive of new physics, and he reflects broadly on the current shortcomings in our understanding of quantum mechanics and general relativity. 't Hooft recounts his childhood in postwar Holland and the influence of his great uncle, the Nobel Prize winner Frits Zernike and his uncle, the theoretical physicist Nico van Kampen. He describes his undergraduate education at Utrecht University where he got to know Martinus Veltman, with whom he would pursue a graduate degree and ultimately share the Nobel Prize. 't Hooft explains the origins of what would become the Standard Model and the significance of Yang-Mills fields and Ken Wilson’s theory of renormalization. He describes Veltman’s pioneering use of computers to calculate algebraic manipulations and why questions of scaling were able to be raised for the first time. 't Hooft discusses his postdoctoral appointment at CERN, his ideas about grouping Feynman diagrams together, and how he became involved in quantum gravity research and Bose condensation. He explains the value in studying instantons for broader questions in QCD, the significance of Hawking’s work on the black hole information paradox, the holographic principle, and why he has diverged with string theorists. 't Hooft describes being present at the start of supersymmetry, and the growing “buzz” that culminated in winning the Nobel Prize. He describes his overall interest in the past twenty years in thinking more deeply about quantum mechanics and he places the foundational disagreement between Einstein and Bohr in historical context. At the end of the interview, 't Hooft surveys the limitations that prevent us from understanding how to merge quantum mechanics and general relativity and why this will require an understanding of how to relate the set of all integer numbers to phenomena of the universe.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Alan Rogers, Research Affiliate and retired as Associate Director of the MIT Haystack Observatory. Rogers discusses his current work on the EDGES project and he suggests the possibility that this research will yield insights on the nature of dark energy. He recounts the circumstances of his birth in Rhodesia and the opportunities that led his family to the United States. Rogers discusses his education at MIT, his interest in radio astronomy, and his research under the direction of Alan Barrett. He narrates the origins of Very Long Baseline Interferometry and its application at the Haystack Observatory. Rogers explains geodesy and why the Mansfield Amendment changed the funding structure at Haystack. He describes becoming Associate Director of Haystack and how he became involved in cell phone infrastructure projects in the 1990s. Rogers explains how EDGES started, its value for measuring ozone concentrations, and he discusses his work for the Event Horizon Telescope. He explains his research contributions for the discovery of hydrogen in the early, cold universe and the value he places on the SRT telescope for educational purposes. At the end of the interview, Rogers explains his desire to expand understanding of low-frequency arrays, particularly in the SKA.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Stanley Brodsky, Professor Emeritus at SLAC. Brodsky surveys his current projects after his retirement last year following 54 years of service to SLAC; they include new initiatives on hadron physics and his interest in the muon G-2 experiment at Fermilab. He recounts his upbringing in St. Paul, his early interests in electrical engineering, and his decision to stay close to home and attend the University of Minnesota for his undergraduate education. He explains his decision to remain at Minnesota for his thesis research, where he worked under the supervision of Donald Yennie on computing atomic levels from first principles in quantum electrodynamics. Brodsky describes his postdoctoral appointment at Columbia, where he worked with Sam Ting at DESY computing the QED radiative corrections for Bethe-Heitler pair production. He recalls his original contact with Sid Drell and his decision to come to SLAC to join the theory group in support of the many experimental programs in train, and he recounts the November Revolution and Sam Ting’s visits to SLAC. Brodsky describes some of the key differences in East Coast and West Coast physics in the 1970s, and he discusses his collaboration with Peter Lepage at the beginning of QCD’s development. He highlights the importance of thinking beyond conventional wisdom and he references his work on intrinsic heavy quarks to illustrate the point. Brodksy discusses his research on the Higgs VEV and the long range value of the Brodsky-Lepage-Mackenzie procedure, and he reflects on the many surprises in QCD color confinement that he has encountered. He explains the value of supersymmetry in his research and he considers why it has not been seen yet and why Maldacena’s work on AdS/CFT has been revolutionary. Brodsky describes SLAC’s increasing involvement in astrophysics and how he has managed his research agenda by working on many different projects at the same time. At the end of the interview, Brodsky emphasizes the significance of Bjorken scaling, he historicizes the first work in physics that explored beyond the Standard Model, and he reflects on the importance that luck has played in his career, simply by finding himself, at so many junctures, in being at the right place at the right time.

Interviewed by
Sean F. Johnston
Interview date
Location
Environmental Research Institute of Michigan (ERIM), Ann Arbor, Michigan
Abstract

This interview focuses on his career in holography and the evolution and interactions of Ann Arbor institutions developing holography, including Willow Run Laboratories, Environmental Research Institute of Michigan (ERIM) and the General Dynamics Corporation.

Interviewed by
Sean Johnston
Interview date
Location
Ann Arbor, Michigan
Abstract

This interview discusses Siebert's early career at North American Aviation, KMS Fusion, and Conductron Corporation, as well as his holography research leading to the first holograms of living subjects.

Interviewed by
Sean Johnston
Interview date
Location
Santa Clara Conference Center
Abstract

Interview discusses Caulfield's career in holography research, his positions held in many companies, his role as the organizer of the first Gordon Research Conference on holography, and his collaboration with peers such as Dennis Gabor, Adolf Lohmann, Ralph Wuerker, and Emmett Leith.

Interviewed by
Sean F. Johnston
Interview date
Location
Benton's office, Media Laboratory, Massachusetts Institute of Technology
Abstract

Steven A. Benton, interviewed by Sean F. Johnston, recorded 11 Jul 2003 in his office at the Media Lab, Massachusetts Institute of Technology, Cambridge MA. Benton, working at Polaroid Corporation in the late 1960s, developed a variant of holography known popularly as ‘rainbow holography’, which permitted holograms to be viewed in white light. He joined MIT in the early 1980s and was subsequently a founder member of the Media Lab. The interview surveys his career in the field. Benton died some 4 months later of a brain tumor.