Nuclear fission

Interviewed by
Ronald Doel
Interview date
Location
American Physical Society, New York City, New York
Abstract

Topics include his youth and education; his Ph.D. work at Columbia University; building the Nevis cyclotron; nuclear fission; the United Nations Nuclear Cross-section Committee; his appointment as Secretary to the American Physical Society; recollections of Karl Darrow;  Physical Review; Physical Review Letters;  various divisions of the American Physical Society; Committee on the Future of Nuclear Physics; his consulting work with Los Alamos in 1962; schism of APS membership over military patronage and Viet Nam War; the changing role of the American Institute of Physics; impressions of William Koch; recollections of Goudsmit retirement as Physical Review editor; his appointment as Professor of Applied Physics and Engineering at Columbia University in 1978; APS involvement in the Star Wars Project; impressions of collaborations in high-energy physics; personal impressions of the role of physics in society.  Prominently mentioned names include:  Karl Darrow, John Dunning, Maurice Ewing, Enrico Fermi, James Fletcher, William Koch, Willis Lamb, George Pegram, Frank Press, Shirley Quimby, I.I. Rabi, James Rainwater, Emilio Segre, Charles Schwartz,  Henry Smyth, Edward Teller, Harold Urey, Hermann Weyl, John Wheeler, Herbert York,  Also the American Physical Society, American Institute of Physics, Columbia University, American Association of Physics Teachers.

Interviewed by
Ronald Doel
Interview date
Location
American Physical Society, New York City, New York
Abstract

Topics include his youth and education; his Ph.D. work at Columbia University; building the Nevis cyclotron; nuclear fission; the United Nations Nuclear Cross-section Committee; his appointment as Secretary to the American Physical Society; recollections of Karl Darrow;  Physical Review; Physical Review Letters;  various divisions of the American Physical Society; Committee on the Future of Nuclear Physics; his consulting work with Los Alamos in 1962; schism of APS membership over military patronage and Viet Nam War; the changing role of the American Institute of Physics; impressions of William Koch; recollections of Goudsmit retirement as Physical Review editor; his appointment as Professor of Applied Physics and Engineering at Columbia University in 1978; APS involvement in the Star Wars Project; impressions of collaborations in high-energy physics; personal impressions of the role of physics in society.  Prominently mentioned names include:  Karl Darrow, John Dunning, Maurice Ewing, Enrico Fermi, James Fletcher, William Koch, Willis Lamb, George Pegram, Frank Press, Shirley Quimby, I.I. Rabi, James Rainwater, Emilio Segre, Charles Schwartz,  Henry Smyth, Edward Teller, Harold Urey, Hermann Weyl, John Wheeler, Herbert York,  Also the American Physical Society, American Institute of Physics, Columbia University, American Association of Physics Teachers.

Interviewed by
Charles Weiner
Interview date
Location
American Institute of Physics, New York City, New York
Abstract

Career in nuclear physics, chiefly through 1939; describes differences in atmosphere among the Universities of Vienna, Berlin, London and Copenhagen; his switch from mathematics to physics at Vienna; work at University of Berlin on a grant, with Peter Pringsheim, before going to Hamburg to work with Otto Stern; with Hitler laws in effect, leaves for position with Patrick M. S. Blackett at Birkbeck College, 1933; then to Niels Bohr's Institute, until 1939; anecdotes about working on neutron experiments and nuclear models in Copenhagen; recounts how he and Lise Meitner explained fission, and memorandum with Rudolf Peierls on bomb possibilities; brief comments on postwar career.

Interviewed by
David DeVorkin
Interview date
Location
Fraser's office, Applied Physics Laboratory, Baltimore, Maryland
Abstract

This interview describes Fraser's work as an engineer and instrumentation specialist at the Department of Terrestrial Magnetism (DTM) during WWII, and then more significantly, at Applied Physics Laboratory (APL) following World War II.  His work at DTM was on proximity fuse research.  He tranferred from DTM to APL during the war and concentrated on radar research and control systems for guided missiles.  After the war, he participated in the used of V-2s for upper atmostphere research with James Van Allen's High Altitude Group, developing instrumentation for telemtetry and cosmic ray research.  Other affiliations and contacts discussed include:  Luis Alvarez, William Fowler, Allen Hynek, Richard Roberts, Philip Rudnick, Robert Shankland, Merle Tuve, James Van Allen, John Victoreen and the Victoreen Instrument Company, White Sands Missile Range.  Topics discussed include metallurgy, nuclear fission, proximity fuzes, rocket development and radio transmission.

Interviewed by
Lillian Hoddeson
Interview date
Location
Dr. Fisk's office, Bell Laboratories, Murray Hill, New Jersey
Abstract

Born 1910 Rhode Island. Engineering interest at an early age; Massachusetts Institute of Technology undergraduate, aeronautical engineering; graduate studies in physics (John Slater, Philip Morse); assistant to Stark Draper, 1932-1934; fellowship at University of Cambridge (Professor Ralph H. Fowler); internal conversion of x-rays (with Geoffrey I. Taylor, 1934); MIT Ph.D. (P. Morse) scattering of slower electrons; William Shockley; junior fellow at Harvard University, 1936-1938; work with Ivan Getting on an electrostatic generator; Harvard Society of Fellows; Bell Laboratories, 1939 (Shockley-Fisk fission work); war work mostly electronics; interaction with industrial research and with universities, 1946 reorganization of physics department forming a solid state physics group; team representing various disciplines to study fundamentals of solid state (Fisk associate director); Director of Research, U.S. Atomic Energy Commission, 1947; professor at Harvard, 1948; Director of Physics Research at Bell Labs, 1949; President of Bell Labs. Also prominently mentioned are: John Bardeen, Oliver E. Buckley, Karl Taylor Compton, Frank Jewett, J. B. Johnson, Ralph Johnson, Mervin J. Kelly, and Gerald Leondus Pearson.

Interviewed by
Charles Weiner
Interview date
Location
Altadena, California
Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by
Charles Weiner
Interview date
Location
Altadena, California
Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by
Charles Weiner
Interview date
Location
Altadena, California
Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by
Charles Weiner
Interview date
Location
Altadena, California
Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by
Kenneth W. Ford
Interview date
Location
University of Texas at Austin
Abstract

DeWitt discusses his early exposure to Wheeler's work through the 1939 Bohr-Wheeler paper on fission (studied by Cecile in 1944), and meeting him not long after the end of World War II. Wheeler's visit to the DeWitts at their home in California in the early 1950s. Bryce's Gravity Research Foundation prize and his move to the Glenn L. Martin Company in Baltimore. Their move to the University of North Carolina in Chapel Hill. Summer conferences. Work with Wheeler on quantum gravity. Assessment of Hugh Everett's "many worlds" dissertation and published paper. Wheeler's role as a critic of Bryce's work. Wheeler's recruitment of Cecile to run a series of scientific meetings at Battelle. Wheeler's role in NATO. Wheeler's contributions to the physics department at the University of Texas at Austin.