Nuclear physics

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Wit Busza, Francis L. Friedman Professor of Physics Emeritus at MIT. He recounts his birth in Romania as his family was escaping Poland at the start of World War II, and his family's subsequent moves to Cyprus and then to British Palestine, where he lived until he was seven, until the family moved to England. He describes the charitable circumstances that allowed him to go to Catholic boarding school, his early interests in science, and the opportunities that led to his undergraduate education in physics at University College in London, where he stayed on for his PhD while doing experiments at CERN working with Franz Heymann. Busza describes the development of spark chambers following the advances allowed by bubble chambers, and his thesis research using the Chew-Low extrapolation to calculate the probability that the proton is a proton plus a pi-zero. He describes meeting Martin Perl and the opportunities that led to his postdoctoral position at SLAC, which he describes in the late 1960s as being full of brilliant people doing the most exciting physics and where he focused on rho proton cross-sections. Busza describes meeting Sam Ting at SLAC which led to Busza's faculty appointment at MIT, where he discovered his talent for teaching. He discusses the complications associated with the discovery of the J/psi and his developing interest in relativistic heavy ion physics, the E178 project at Fermilab to examine what happens when high energy hadrons collide, and the E665 experiment to study quark propagation through nuclear matter. Busza describes the import of the RHIC and PHOBOS collaborations, and he discusses his return to SLAC to focus on WIC and SLD. He describes the global impact of the LHC and CERN, and his satisfaction at being a part of what the DOE called the best nuclear physics group in the country. In the last part of the interview, Busza reflects on the modern advances in atomic and condensed matter physics, which were inconceivable for him to imagine at the beginning of his career, he describes the considerations leading to his retirement, and why, if could re-live his career, he would think harder about being a theorist.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Willy Haeberli, Professor of Physics Emeritus at the University of Wisconsin in Madison, Wisconsin. Haeberli recounts his childhood in Basel, Switzerland, and he describes his experiences as a student during World War II. He discusses his early interest in physics and his decision to pursue nuclear physics at the University of Basel under the direction of Paul Huber. Haeberli describes his graduate research on the ionization of gasses by alpha particles, and he describes the circumstances leading to his subsequent postdoctoral job at the University of Wisconsin, where he was attracted to work with Raymond Herb in accelerator physics. He explains some of the scientific and cultural adjustments in order to settle in at Madison, and he describes the central questions of the structure of atomic nuclei that propelled nuclear physics at that time. He describes his subsequent research at Duke University before returning to Madison to join the faculty, he describes his many research visits to ETH Zurich, the Max Planck Institute, Fermilab, Saclay, and at DESY in Hamburg, and he offers insight on some of the differences in approach between American and European accelerator labs. Haeberli reflects on his contributions to the study of polarized protons and deuterons and angular momentum assignments. He discusses his work developing gas targets of pure spin polarized hydrogen and deuteron atoms, and he describes the critical support of the DOE and the NSF for this research. Haeberli shares his feelings on being elected to the National Academy of Sciences, and he explains his preference teaching undergraduates to graduate students. At the end of the interview, Haeberli describes how the department of physics at Wisconsin has changes over his decades of service, and he explains how only with the benefit of historical hindsight can one distinguish the truly important advances in the field. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with William Herrmannsfeldt, Staff Physicist at SLAC. Herrmannsfeldt recounts his German heritage, his upbringing in Ohio, and his early interests in physics which he pursued as an undergraduate at Miami University. He discusses his graduate work on beta decay and nuclear physics at the University of Illinois, under the direction of James Allen, and he describes his postdoctoral appointment at Los Alamos where he made detectors for bomb tests. Herrmannsfeldt explains the connection between his work at Los Alamos on electron optics and his initial research at SLAC, and he describes his work on linear accelerators. He describes his tenure as Secretary of the Advanced Development Group and his role at the AEC to concentrate on accelerator physics for Fermilab. Herrmannsfeldt explains the decision to move ahead with the PEP project and his LINAC work at Berkeley. Herrmannsfeldt explains the relevance of this research to nuclear fusion, and he describes some of the technical challenges in building the superconducting RF system. At the end of the interview, Herrmannsfeldt conveys the sense of fun he felt in learning new technological systems, the inherent challenges of beam dynamics, and he reflects on how SLAC has changed since its inception. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Warren W. Buck, Chancellor Emeritus, Professor of Physics Emeritus at the University of Washington at Bothell, and Adjunct Professor of Physics and Special Advisor to the President for Equity in the 21st Century at William and Mary. Buck recounts his upbringing in segregated Washington DC, his early interests in science, and the opportunities that led to his admission to Lincoln University for his undergraduate degree before transferring to Morgan State. He discusses the racial strife and the civil rights movements of the late 1960s, his interest in physics as an undergraduate, and his decision to pursue a graduate degree at William and Mary. He explains his decision to leave after getting a master’s degree to teach at Bowie State and to be more involved in Black student organizing, and he describes his thesis research on deuteron theory under the direction of Franz Gross. Buck describes sailing in the Bahamas after graduate school and his appointments at Stony Brook and Los Alamos, and he explains his interests in nucleon-nucleon interactions. He describes a formative research year in Paris and his subsequent faculty position at Hampton University, his collaboration with Jefferson Lab, and his work introducing theoretical mesonic form factors. Buck discusses meeting Lillian McDermott and his recruitment to help build a new UW satellite campus at Bothell as chancellor. He surveys his accomplishments in that role and explains his decision to retire, and at the end of the interview, Buck discusses his interest in Buddhism and how Buddhist philosophy can be understood in the context of nuclear theory.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Timothy James Symons, Senior Scientist at Lawrence Berkeley National Laboratory and recently retired as Associate Laboratory Director for Physical Sciences, for which he ran the Lab’s programs in high energy and nuclear physics. Symons explains how the Lab has responded to the pandemic and the wide range of physics research he is following at Berkeley and beyond. He recounts his childhood in England and his early interests in science and the opportunities that led to his undergraduate education at Oxford where a tutor focused his interests in nuclear physics. Symons explains his reasons for remaining at Oxford for graduate school and the relevance of the SU(3) shell model for his thesis. He describes his postdoctoral work at the UK Science Research Council, and the opportunities that initially led him to Berkeley to work with David Scott on low energy nuclear structure. Symons provides a history of the Bevatron and the many reasons that compelled him to take a staff position. He describes the challenges in replacing the Bevelac, and the import of the ISABELLE cancellation at Brookhaven on Berkeley’s decisions. He provides detail on the interplay between laboratory experiments and DOE policy decisions and he explains the significant administrative pull of his work for NSAC. Symons reviews broadly the state of U.S. nuclear physics in the 1990s and the value of the APS as a sounding board in shaping policies for the decade. He does the same for rare isotopes in the early 2000s and how the Lab became involved in DUSEL. Symons describes his world as Associate Lab Director and he discusses his interactions with the Lab Director which gave him a high-altitude appreciate for the broad range of research across the Lab. He explains the Lab’s contributions in energy research which stems from Steve Chu’s directorship. At the end of the interview, Symons reflects on the significant changes in the Lab’s scope and mission over his career, the overall trend that once-disparate research areas are now increasingly on a path of convergence, and he conveys optimism on the fundamental discoveries that are within reach for the near future of nuclear physics.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Roger Schneider, retired and formerly Associate Director for Science of the Center for Devices and Radiological Health at the FDA. Schneider recounts his childhood in Yakima, Washington, and he describes his early interests in science.  He discusses his undergraduate education at Stanford, and he explains his motivation to join the Public Health Service as a physicist working to detect nuclear fission products in the environment.  Schneider describes his graduate education at NYU in the Department of Nuclear Engineering, and he explains how this work led to his appointment as part of an experimental physics group set up by the Public Health Service in Rockville, Maryland.  He explains the lab’s mission to detect radiation emanating from various medical and consumer products, and he describes the Congressional legislation that created the FDA.  Schneider provides an institutional history of the origins of the National Center for Radiological Health and its formative work on the safety of lasers, ultraviolet sources, and radio waves.  He explains the negotiations that inevitably arose between industry, medical practitioners, and the relevant regulatory agencies charged with safety and efficacy.  Schneider explains the origins of MOSFET technology and its development by the semiconductor industry and the valuable collaborations he pursued with the International Society for Optical Engineering. He conveys the importance of the Radiation Control Act to standardize radiation thresholds for patient exposure and the impact of CT technology on these standards. Schneider discusses his contributions to mammography and the diagnostic challenges inherent in breast cancer detection. At the end of the interview, Schneider reflects on his career and how he has contributed to the mission of the FDA while working to ensure that that medical industry was making products that were held to the highest standards of safety.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Robert Cahn, Senior Scientist Emeritus at the Lawrence Berkeley Laboratory. Cahn recounts his childhood in the San Francisco area, and he describes his early interests in math and science, and he describes his undergraduate experience at Harvard, where he was influenced by Dan Kleppner and Ed Purcell. Cahn describes his summer internship at SLAC, and his travel experiences in Europe after graduating. He describes his decision to pursue graduate work at Berkeley and he explains the political tumult that had convulsed the campus in the late 1960s. Cahn discusses his work with Dave Jackson on Regge theory and his postdoctoral work at SLAC, which was focused on quark research. Cahn describes his work at the University of Washington, where he collaborated with Lowell Brown, and he explains his decision to join the physics faculty at University of Michigan, where he collaborated on several projects with Gordy Kane and where he became interested in parity violation in atoms. Cahn explains his decision to move to UC Davis, and he describes the opportunity at LBL that presented itself shortly thereafter. Cahn describes the way LBL has been integrated with the physics department at Berkeley, and he discusses his tenure as Director of the Physics division. At the end of the interview, Cahn describes LBL’s increasing involvement in cosmology, the fundamental discoveries that have been made over the course of his career, and he considers some of the philosophical or metaphysical issues that arise in investigating how the universe works.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Richard Casten, D. Allan Bromley Professor of Physics Emeritus at Yale, and consultant for the Facility for Rare Ion Beams facility at Michigan State. Casten recounts his childhood in Manhattan and his decision to attend Holy Cross for his undergraduate studies, where he pursued a degree in physics from the outset. He describes the long term benefits of a degree that required significant coursework in the humanities, and how he came to focus on nuclear physics as a research focus. Casten describes his graduate work at Yale and his work with Allan Bromley, who at the time was working on lower energy accelerators. Casten explains the major research questions in nuclear physics at that time, and he describe his research in the Coulomb excitation in the osmium isotopes. He recounts his time at the Niels Bohr Institute in Copenhagen, his work using the triton beam at Los Alamos, and his subsequent research on the tandem accelerator at Brookhaven. Casten explains the rise of interest in the interacting boson model, and he describes his decision to join the faculty at Yale where he directed the Wright Nuclear Structure Lab. He describes his research over the course of his tenure at Yale, and the import of the collaborations he has maintained with his colleagues in Cologne. At the end of the interview, Casten provides an overview of his key contributions, and he shares what is most compelling to him for the future of nuclear physics.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Nicholas Samios, Director Emeritus of Brookhaven National Laboratory.  He describes his family’s Greek heritage and he recounts his childhood in Manhattan and the value of the education he received at Stuyvesant High School. He describes his decision to attend Columbia as an undergraduate, where he studied under Jack Steinberger, Polycarp Kusch, and I.I. Rabi. Samios explains his decision to remain at Columbia for graduate school, and he explains some of the exciting things that were happening in particle physics then, including the use of cloud chambers to discover the “strange particles” called lambdas and thetas. He describes his dissertation research studying these particles using bubble chambers and searching for parity violation, and he explains his interest in the research at the Nevis Cyclotron in Westchester. Samios discusses his postdoctoral research at Columbia before accepting a position at Brookhaven, which was in the middle of building the Alternating Gradient Synchrotron, and he describes the difference between this work on pions and what Panofsky was doing with electrons at Stanford. He describes his subsequent work designing neutrino beams and his contribution to the discovery of the baryon charm, and he describes his tenure as chair of Brookhaven’s physics department and his efforts to produce complementary and not redundant work with the other National Labs. Samios recounts his time as Director at Brookhaven, and he describes in detail the ISABELLE project and why it was cancelled by the Reagan administration. He connects the fall of ISABELLE with the origins and ultimate failure of the SSC and the inevitable loss of leadership the U.S. experienced in high energy physics.  Samios discusses why the RHIC endeavor delayed his retirement and the significance of RHIC’s discovery of the quark-gluon plasma.  At the end of the interview, Samios surveys the fundamental discoveries that occurred over his career on the Standard Model and parity conservation, the ongoing mystery of dark matter, and he outlines the many ways that particle physics has positively influenced technology and human well-being.

Interviewed by
Charles Weiner
Interview date
Location
Carl Anderson's office, Pasadena, California
Abstract

Anderson talks almost exclusively about his work during the thirties with particles of high energy involved in nuclear reactions. He covers in detail his discovery of the positive electron, his pair production work with gamma rays, his expedition to Pike’s Peak with Neddermeyer and their discovery of the mesotron. He mentions that it was in his speech accepting the Nobel Prize in 1936 that he first mentioned the possibility of negative and positive particles of intermediate mass. After noting the absence of any cosmic ray work during the war years, he mentions the postwar development of cosmic ray work into high energy physics.