Particles (Nuclear physics)

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Barry Barish, Linde Professor of Physics Emeritus at Caltech, where he retains a collaboration with LIGO, and Distinguished Professor of Physics at UC Riverside. Barish recounts his childhood in Los Angeles and emphasizes that sports were more important than academics to him growing up. He explains his decision to attend Berkeley as an undergraduate, where his initial major was engineering before he realized that he really loved physics, and where he was advised by Owen Chamberlain. Barish describes the fundamental work being done at the Radiation Lab and how he learned to work the cyclotron. He explains why Fermi became his life-long hero and why he decided to stay at Berkeley for graduate school, even though the school’s general policy required students to pursue their doctoral work elsewhere. Barish describes his graduate research under the direction of Carl Hemholz, and he explains how he developed a relationship with Richard Feynman which led to his postdoc and ultimately, his faculty appointment at Caltech. He discusses how his interest in neutrinos led to his work at Fermilab and why the big question at the time was how to discover the W boson. Barish describes his key interests in magnetic monopoles and neutrino oscillations, and he describes his involvement with the SSC project through a connection with Maury Tigner at Berkeley, which developed over the course of his collaborations with Sam Ting. He explains that his subsequent work with LIGO never would have happened had the SSC been viable, and he describes his early connection as a young student learning general relativity as a connecting point to LIGO. Barish describes his general awareness of what Rai Weiss had been doing prior to 1994 and he relates the state of affairs of LIGO at that point. He conveys the intensity of his involvement from 1994 to 2005 and he describes the skepticism surrounding the entire endeavor and what success would have looked like without any assurance that the experiment would actually detect gravitational waves. Barish describes the road to detection as one of incremental improvements to the instrumentation achieved over several years, including the fundamental advance of active seismic isolation. He narrates the day of the detection, and he surveys the effect that the Nobel Prize has had on the LIGO collaboration and its future prospects. Barish notes the promise that AI offers for the future of LIGO, and he prognosticates the future viability of the ILC. At the end of the interview Barish explains what LIGO has taught us about the universe, and what questions it will allow us to ask in the future as a result of its success. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Stanley Wojcicki, professor emeritus in the Department of Physics at Stanford. Wojcicki recounts his family’s experiences in war-time Poland and his father’s work for the Polish government-in-exile in London. He discusses his family’s postwar escape to Sweden from the Communists before their passage to the United States. Wojcicki discusses his undergraduate experience at Harvard and the opportunities that came available as a result of Sputnik in 1957. He explains his decision to pursue his graduate research at Berkeley under the direction of Art Rosenfeld, and his realization at the time that Berkeley was at the forefront in the revolution of experimental elementary particle physics headed by Luis Alvarez and the bubble chamber technique used by his group. Wojcicki explains how SU(3) transitioned from a mathematical concept to a central component of particle physics, and he describes his postdoctoral work at Berkeley Laboratory and his NSF fellowship at CERN to work on K-meson beam experiments. He discusses his faculty appointment at Stanford and his close collaboration with Mel Schwartz using spark chambers. Wojcicki describes his advisory work for Fermilab and for HEPAP, and the controversy surrounding the ISABELLE project and the initial site and design planning of the SSC. He explains some of the early warning signs of the project’s eventual cancellation, and his work looking at charm particles at Fermilab from produced muons. Wojcicki explains that the endowed chairs named in his honor at Stanford were a retirement gift from his daughter Anne and her husband, Google co-founder Sergey Brin. Wojcicki reflects on his long career at Stanford, and he describes how the physics department has changed over the years and how government supported science has evolved. At the end of the interview, Wojcicki contrasts the sense of fundamental discoveries that permeated his early career, and he cites neutrino physics as a potentially promising area of significant discovery into the future.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Kenneth Lande, professor emeritus in the Department of Physics at the University of Pennsylvania. Lande recounts his early childhood in Austria and his family’s escape to New York City from the Nazis has a young boy. Lande describes his interest in science, which he developed during his time at Brooklyn Tech, which he pursued as an undergraduate at Columbia. He describes working on bubble chambers under the direction of Leon Lederman at Nevis Lab in Westchester, and why he gave no consideration to graduate schools other than Columbia. Lande discusses his research at Brookhaven and he describes the major projects of the early 1950s including the Cosmotron and Lederman’s cloud chamber. He describes his thesis research on K mesons and explains that he accepted a job offer at the University of Pennsylvania before he defended his dissertation. Lande describes Penn’s and Princeton’s joint effort to become competitive in accelerator physics, and he explains his growing involvement in neutrino physics and work at Los Alamos in the 1960s. He explains the need to work underground when studying neutrino events caused by cosmic rays, and he describes his involvement with the Homestake mine collaboration. Lande describes his research involving gallium at the Baksan Observatory in the Soviet Union, the importance of the Kamiokande experiment, and he provides a history of neutrino physics that connects Darwin to Hans Bethe. He compares his research at Brookhaven, Fermilab, and Los Alamos, and he explains why he discourages undergraduates from memorizing anything as a way to encourage critical thinking. At the end of the interview Lande reflects on how collaborations have grown enormously over the course of his career, and looking ahead, he sees his contributions to neutrino research as prelude to something much bigger and fundamental for future discovery.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Peter Zimmerman, Emeritus Professor of Science and Security in the War Studies Department, King’s College London. Zimmerman recounts his upbringing in Wisconsin and then New Mexico in support of his father’s work in civilian and military defense, and he describes his early interests in science. He discusses his undergraduate experience at Stanford and the influence of Walter Meyerhof, and his decision to remain at Stanford for graduate school. Zimmerman discusses his postdoctoral appointments at DESY and then Fermilab until his first faculty appointment at LSU. He explains his involvement with the nuclear issues at the federal level in the 1970s and his offer to join the ACDA. Zimmerman discusses his opposition to strategic missile defense and he explains how his policy analysis work at the Carnegie Endowment filtered its way into policymaking. He describes the debates around ending nuclear testing and his interest in looking at nuclear weapons in the context of international terrorism. Zimmerman explains the negative security ramifications of the ACDA being folded into the Department of State and he explains his move to become Chief Scientist of Senate Foreign Relations Committee. He describes the scene in Washington on 9/11 and the subsequent anthrax attacks in Congress, and he explains why he never believed that Saddam Hussein had a WMD capability before the Iraq War. Zimmerman discusses his professorship in London and his opportunity to create a new center on science and security, and he shares his perspective on the JCPOA and what bothered him the most about Trump’s foreign policy decisions. At the end of the interview, Zimmerman reflects on how to best translate scientific analysis into good policy outcomes, and why a lack of public interest or media coverage should never make us lose sight of ongoing security threats.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Geoffrey West, Shannan Distinguished Professor at the Santa Fe Institute. West provides a brief history of SFI as a collaborative idea between Murray Gell-Mann, Phil Anderson, and David Pines, and he explains the funding sources that launched the Institute. He recounts his childhood in England and his family’s Jewishly-observant household. West describes his switch from math to physics as an undergraduate at Cambridge and his interest in becoming involved in the origins of SLAC at Stanford. He discusses Panofsky and the “Monster Accelerator,” and studying fold factors of the triton and helium-3 nuclei under the direction of Leonard Schiff. West describes his subsequent postdoctoral work at Cornell and the formative influence of Ken Wilson, and his next position at Harvard where he pursued research on the quark proton model into a kind of a covariant framework. West explains his decision to join the faculty back at Stanford, he conveys the excitement at SLAC in deep inelastic research, and he provides a backdrop of the work that would become the “November Revolution” in 1974. He describes the importance of meeting Peter Carruthers and his reasons for transferring to the theory group at Los Alamos. West discusses his moral conflict working at a Lab with such close ties to nuclear weapon research, and he credits the Manhattan Project as the intellectual source for the Lab’s multidisciplinary approach. West discusses how the culture at Los Alamos served as a prototype for SFI, and how at that point he had migrated intellectually from high energy physics to string theory, and how both organizations encouraged the kind of multidisciplinary approach that encouraged his interests in biological populations. He describes his tenure as SFI president and his developing interest in sustainability, he prognosticates on what the SFI education model could contribute to post-pandemic higher education, and he explains how the pandemic has influenced his views on the future of cities. At the end of the interview, West describes his current interest in biological lifespans and he reflects on the extent to which is unorthodox career trajectory could serve as a model for scientists who will increasingly work in realms less bounded by strict departmental divisions.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Pierre Sikivie, Distinguished Professor of Physics at the University of Florida. Sikivie explains how the social isolation imposed by the pandemic has been beneficial for his research, and he recounts his childhood in Belgium and his family’s experiences during World War II. He discusses his undergraduate work and his natural inclination toward theoretical physics, and the opportunities that led to his graduate work at Yale under the mentorship of Feza Gürsey. Sikivie explains that his initial interests were in elementary particle physics which was the topic of his research on Grand Unification and the E6 group. He describes his postdoctoral research at the University of Maryland where he worked on CP violation, and he explains his decision to pursue his next postdoctoral position at SLAC to work on non-Abelian classical theories. Sikivie explains that his interests in cosmology and astrophysics only developed during his subsequent work at CERN, and the circumstances that led to axion research becoming his academic focal point. He describes his appointment to the faculty at the University of Florida and when he became sure that axions would prove to be a career-long pursuit. He narrates his invention of the axion haloscope and how this research evolved into the ADMX collaboration. Sikivie explains why he was, and remains, optimistic about the centrality of axion research to the discovery of dark matter, and he discusses the import of QCD on axion physics over the past thirty years. At the end, Sikivie surveys some of the challenges working in a field whose promise remains in some way hypothetical but which nonetheless holds promise for fundamental discovery.

Interviewed by
David Zierler
Interview dates
July 27 & August 2, 2020
Location
Video conference
Abstract

In this interview, Peter McIntyre, Mitchell-Heep professor of experimental physics at Texas A&M University, and president of Accelerator Technology Corporation discusses his career and achievements as a professor. McIntyre recounts his childhood in Florida, and he explains his decision to pursue physics as an undergraduate at the University of Chicago and the influence of his longtime hero Enrico Fermi. He discusses his interests in experimental physics and he explains his decision to stay at Chicago for graduate school, where he worked with Val Teledgi, during a time he describes as the last days of bubble chamber physics. McIntyre conveys his intense opposition to the Vietnam War and the extreme lengths he took to avoid being drafted, and his dissertation work on the Ramsey resonance in zero field. He describes Telegdi’s encouragement for him to pursue postdoctoral research at CERN where he worked with Carlo Rubbia on the Intersecting Storage Rings project. He describes his time as an assistant professor at Harvard and his work at Fermilab, and the significance of his research which disproved Liouville’s theorem. McIntyre describes the series of events leading to his tenure at Texas A&M, and he explains how his hire fit into a larger plan to expand improve the physics program there. He discusses the completion of the Tevatron at Fermilab and the early hopes for the discovery of the mass scale of the Higgs boson, and he describes the origins of the SSC project in Texas and the mutually exclusive possibility that Congress would fund the International Space Station instead. McIntyre describes the key budgetary shortfalls that essentially doomed the SSC from the start, his efforts in Washington to keep the project viable, and the technical shortcomings stemming from miscommunication and stove-piping of expertise. He describes his involvement in the discovery of the top quark and the fundamental importance of the CDF, DZero, and ATLAS collaborations. McIntyre discusses his achievements as a teacher to undergraduates and a mentor to graduate students, and he assesses the current and future prospects for ongoing discovery in high energy physics. At the end of the interview, McIntyre describes his current wide-ranging research interests, including his efforts to improve the entire diagnostic infrastructure in screening and early detection of breast cancer.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Laurence Yaffe, chair of the department of physics at the University of Washington. Yaffe recounts his childhood in northern California and his early interests in science and the influence of his mother, who was a chemist. He discusses his undergraduate experience at Caltech, where he became absorbed in physics even as he continued in his major in chemistry. Yaffe explains his graduate offer from John Wheeler to pursue a Ph.D. in physics at Princeton. He describes the intellectual benefits of going back and forth between the Institute and the department, and he discusses his relationship with his graduate advisor, David Gross. Yaffe explains why he believes string theory should continue to be pursued, particularly in light of developments related to AdS/CFT duality. He describes his decision to return to Caltech for his postdoctoral research, and he recounts his considerations with competing faculty offers from Caltech and Princeton. Yaffe discusses his early faculty career at Princeton and his work on quark and lepton masses and the large-N limit of QCD or Yang-Mills theory. He describes the events leading to his decision to join the faculty at UW and his ongoing interests in QCD. Yaffe explains the evolution of quantum field theory over the course of his career, and he describes how advances in computers have revolutionized theory. He discusses some of the challenges inherent in the current state of the field, and he discusses his advisory work for the Department of Energy. At the end of the interview, Yaffe reflects on the overall and historic excellence of the department of physics at UW, and he explains why he will remain interested in quantum entanglement for the foreseeable future.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Jonathan Dorfan, emeritus director of SLAC, and emeritus president of the Okinawa Institute of Science and Technology, Graduate University. Dorfan recounts his childhood in South Africa and his experiences with apartheid, and he explains how he developed his early interests in science. He discusses his time at the University of Cape Town and a formative visit he made to SLAC where his older brother was working. Dorfan describes his subsequent studies at UC-Irvine and he explains his interest in pursuing a graduate degree in particle physics and high-energy physics during the excitement surrounding the Standard Model. He discusses his move to SLAC to conduct research with rapid cycling bubble chambers which turned into his thesis. Dorfan describes his postdoctoral research at SLAC with Martin Perl and his involvement with the Mark I and Mark II experiments, and he describes the opportunities leading to his faculty position at SLAC. He discusses the centrality of the B-factory project, and he describes his considerations when he was offered the directorship at Fermilab. Dorfan describes the impact of the rise and fall of the SSC on SLAC, and he explains the leadership positions which at a certain point put him on track to assume the directorship of SLAC. He describes SLAC’s entrée to astrophysics and the strategic partnership it developed with NASA, and he reflects on whether this transition would have been conceivable to Panofsky’s founding vision for the lab. Dorfan describes the changing culture of SLAC and its increasingly bureaucratized nature toward the end of his directorship, his work in support of advancing cancer research at Stanford, and he discusses the circumstances leading to his directorship of the Okinawa Institute. At the end of the interview, Dorfan emphasizes continuity over change as the dominant theme of his career in science with an arc that has increasingly bent toward concerns of broad societal relevance.