Interview with Kenneth Lande, professor emeritus in the Department of Physics at the University of Pennsylvania. Lande recounts his early childhood in Austria and his family’s escape to New York City from the Nazis has a young boy. Lande describes his interest in science, which he developed during his time at Brooklyn Tech, which he pursued as an undergraduate at Columbia. He describes working on bubble chambers under the direction of Leon Lederman at Nevis Lab in Westchester, and why he gave no consideration to graduate schools other than Columbia. Lande discusses his research at Brookhaven and he describes the major projects of the early 1950s including the Cosmotron and Lederman’s cloud chamber. He describes his thesis research on K mesons and explains that he accepted a job offer at the University of Pennsylvania before he defended his dissertation. Lande describes Penn’s and Princeton’s joint effort to become competitive in accelerator physics, and he explains his growing involvement in neutrino physics and work at Los Alamos in the 1960s. He explains the need to work underground when studying neutrino events caused by cosmic rays, and he describes his involvement with the Homestake mine collaboration. Lande describes his research involving gallium at the Baksan Observatory in the Soviet Union, the importance of the Kamiokande experiment, and he provides a history of neutrino physics that connects Darwin to Hans Bethe. He compares his research at Brookhaven, Fermilab, and Los Alamos, and he explains why he discourages undergraduates from memorizing anything as a way to encourage critical thinking. At the end of the interview Lande reflects on how collaborations have grown enormously over the course of his career, and looking ahead, he sees his contributions to neutrino research as prelude to something much bigger and fundamental for future discovery.
Interview with Peter Zimmerman, Emeritus Professor of Science and Security in the War Studies Department, King’s College London. Zimmerman recounts his upbringing in Wisconsin and then New Mexico in support of his father’s work in civilian and military defense, and he describes his early interests in science. He discusses his undergraduate experience at Stanford and the influence of Walter Meyerhof, and his decision to remain at Stanford for graduate school. Zimmerman discusses his postdoctoral appointments at DESY and then Fermilab until his first faculty appointment at LSU. He explains his involvement with the nuclear issues at the federal level in the 1970s and his offer to join the ACDA. Zimmerman discusses his opposition to strategic missile defense and he explains how his policy analysis work at the Carnegie Endowment filtered its way into policymaking. He describes the debates around ending nuclear testing and his interest in looking at nuclear weapons in the context of international terrorism. Zimmerman explains the negative security ramifications of the ACDA being folded into the Department of State and he explains his move to become Chief Scientist of Senate Foreign Relations Committee. He describes the scene in Washington on 9/11 and the subsequent anthrax attacks in Congress, and he explains why he never believed that Saddam Hussein had a WMD capability before the Iraq War. Zimmerman discusses his professorship in London and his opportunity to create a new center on science and security, and he shares his perspective on the JCPOA and what bothered him the most about Trump’s foreign policy decisions. At the end of the interview, Zimmerman reflects on how to best translate scientific analysis into good policy outcomes, and why a lack of public interest or media coverage should never make us lose sight of ongoing security threats.
Interview with Geoffrey West, Shannan Distinguished Professor at the Santa Fe Institute. West provides a brief history of SFI as a collaborative idea between Murray Gell-Mann, Phil Anderson, and David Pines, and he explains the funding sources that launched the Institute. He recounts his childhood in England and his family’s Jewishly-observant household. West describes his switch from math to physics as an undergraduate at Cambridge and his interest in becoming involved in the origins of SLAC at Stanford. He discusses Panofsky and the “Monster Accelerator,” and studying fold factors of the triton and helium-3 nuclei under the direction of Leonard Schiff. West describes his subsequent postdoctoral work at Cornell and the formative influence of Ken Wilson, and his next position at Harvard where he pursued research on the quark proton model into a kind of a covariant framework. West explains his decision to join the faculty back at Stanford, he conveys the excitement at SLAC in deep inelastic research, and he provides a backdrop of the work that would become the “November Revolution” in 1974. He describes the importance of meeting Peter Carruthers and his reasons for transferring to the theory group at Los Alamos. West discusses his moral conflict working at a Lab with such close ties to nuclear weapon research, and he credits the Manhattan Project as the intellectual source for the Lab’s multidisciplinary approach. West discusses how the culture at Los Alamos served as a prototype for SFI, and how at that point he had migrated intellectually from high energy physics to string theory, and how both organizations encouraged the kind of multidisciplinary approach that encouraged his interests in biological populations. He describes his tenure as SFI president and his developing interest in sustainability, he prognosticates on what the SFI education model could contribute to post-pandemic higher education, and he explains how the pandemic has influenced his views on the future of cities. At the end of the interview, West describes his current interest in biological lifespans and he reflects on the extent to which is unorthodox career trajectory could serve as a model for scientists who will increasingly work in realms less bounded by strict departmental divisions.
Interview with Pierre Sikivie, Distinguished Professor of Physics at the University of Florida. Sikivie explains how the social isolation imposed by the pandemic has been beneficial for his research, and he recounts his childhood in Belgium and his family’s experiences during World War II. He discusses his undergraduate work and his natural inclination toward theoretical physics, and the opportunities that led to his graduate work at Yale under the mentorship of Feza Gürsey. Sikivie explains that his initial interests were in elementary particle physics which was the topic of his research on Grand Unification and the E6 group. He describes his postdoctoral research at the University of Maryland where he worked on CP violation, and he explains his decision to pursue his next postdoctoral position at SLAC to work on non-Abelian classical theories. Sikivie explains that his interests in cosmology and astrophysics only developed during his subsequent work at CERN, and the circumstances that led to axion research becoming his academic focal point. He describes his appointment to the faculty at the University of Florida and when he became sure that axions would prove to be a career-long pursuit. He narrates his invention of the axion haloscope and how this research evolved into the ADMX collaboration. Sikivie explains why he was, and remains, optimistic about the centrality of axion research to the discovery of dark matter, and he discusses the import of QCD on axion physics over the past thirty years. At the end, Sikivie surveys some of the challenges working in a field whose promise remains in some way hypothetical but which nonetheless holds promise for fundamental discovery.
In this interview, Peter McIntyre, Mitchell-Heep professor of experimental physics at Texas A&M University, and president of Accelerator Technology Corporation discusses his career and achievements as a professor. McIntyre recounts his childhood in Florida, and he explains his decision to pursue physics as an undergraduate at the University of Chicago and the influence of his longtime hero Enrico Fermi. He discusses his interests in experimental physics and he explains his decision to stay at Chicago for graduate school, where he worked with Val Teledgi, during a time he describes as the last days of bubble chamber physics. McIntyre conveys his intense opposition to the Vietnam War and the extreme lengths he took to avoid being drafted, and his dissertation work on the Ramsey resonance in zero field. He describes Telegdi’s encouragement for him to pursue postdoctoral research at CERN where he worked with Carlo Rubbia on the Intersecting Storage Rings project. He describes his time as an assistant professor at Harvard and his work at Fermilab, and the significance of his research which disproved Liouville’s theorem. McIntyre describes the series of events leading to his tenure at Texas A&M, and he explains how his hire fit into a larger plan to expand improve the physics program there. He discusses the completion of the Tevatron at Fermilab and the early hopes for the discovery of the mass scale of the Higgs boson, and he describes the origins of the SSC project in Texas and the mutually exclusive possibility that Congress would fund the International Space Station instead. McIntyre describes the key budgetary shortfalls that essentially doomed the SSC from the start, his efforts in Washington to keep the project viable, and the technical shortcomings stemming from miscommunication and stove-piping of expertise. He describes his involvement in the discovery of the top quark and the fundamental importance of the CDF, DZero, and ATLAS collaborations. McIntyre discusses his achievements as a teacher to undergraduates and a mentor to graduate students, and he assesses the current and future prospects for ongoing discovery in high energy physics. At the end of the interview, McIntyre describes his current wide-ranging research interests, including his efforts to improve the entire diagnostic infrastructure in screening and early detection of breast cancer.
In this interview, David Zierler, Oral Historian for AIP, interviews Laurence Yaffe, chair of the department of physics at the University of Washington. Yaffe recounts his childhood in northern California and his early interests in science and the influence of his mother, who was a chemist. He discusses his undergraduate experience at Caltech, where he became absorbed in physics even as he continued in his major in chemistry. Yaffe explains his graduate offer from John Wheeler to pursue a Ph.D. in physics at Princeton. He describes the intellectual benefits of going back and forth between the Institute and the department, and he discusses his relationship with his graduate advisor, David Gross. Yaffe explains why he believes string theory should continue to be pursued, particularly in light of developments related to AdS/CFT duality. He describes his decision to return to Caltech for his postdoctoral research, and he recounts his considerations with competing faculty offers from Caltech and Princeton. Yaffe discusses his early faculty career at Princeton and his work on quark and lepton masses and the large-N limit of QCD or Yang-Mills theory. He describes the events leading to his decision to join the faculty at UW and his ongoing interests in QCD. Yaffe explains the evolution of quantum field theory over the course of his career, and he describes how advances in computers have revolutionized theory. He discusses some of the challenges inherent in the current state of the field, and he discusses his advisory work for the Department of Energy. At the end of the interview, Yaffe reflects on the overall and historic excellence of the department of physics at UW, and he explains why he will remain interested in quantum entanglement for the foreseeable future.
Interview with Jonathan Dorfan, emeritus director of SLAC, and emeritus president of the Okinawa Institute of Science and Technology, Graduate University. Dorfan recounts his childhood in South Africa and his experiences with apartheid, and he explains how he developed his early interests in science. He discusses his time at the University of Cape Town and a formative visit he made to SLAC where his older brother was working. Dorfan describes his subsequent studies at UC-Irvine and he explains his interest in pursuing a graduate degree in particle physics and high-energy physics during the excitement surrounding the Standard Model. He discusses his move to SLAC to conduct research with rapid cycling bubble chambers which turned into his thesis. Dorfan describes his postdoctoral research at SLAC with Martin Perl and his involvement with the Mark I and Mark II experiments, and he describes the opportunities leading to his faculty position at SLAC. He discusses the centrality of the B-factory project, and he describes his considerations when he was offered the directorship at Fermilab. Dorfan describes the impact of the rise and fall of the SSC on SLAC, and he explains the leadership positions which at a certain point put him on track to assume the directorship of SLAC. He describes SLAC’s entrée to astrophysics and the strategic partnership it developed with NASA, and he reflects on whether this transition would have been conceivable to Panofsky’s founding vision for the lab. Dorfan describes the changing culture of SLAC and its increasingly bureaucratized nature toward the end of his directorship, his work in support of advancing cancer research at Stanford, and he discusses the circumstances leading to his directorship of the Okinawa Institute. At the end of the interview, Dorfan emphasizes continuity over change as the dominant theme of his career in science with an arc that has increasingly bent toward concerns of broad societal relevance.
Interview with Milton Dean Slaughter, Affiliate Professor of Physics at Florida International University. Slaughter recounts his childhood in New Orleans, his involvement in the civil rights movement, and he describes his undergraduate work in physics at Louisiana State University and his graduate work in theoretical physics at the University of New Orleans, where his dissertation focused on electron-laser pulse scattering. Slaughter discusses his long tenure in the department of physics at UNO, and prior to that his research in theoretical physics at Los Alamos. At the end of the interview, he discusses his long-term interest in gravity.
Interview with Paul Emma, retired and formerly Senior Staff Scientist at SLAC. Emma recounts his childhood in Illinois, and he describes his undergraduate work at Western Washington University in Bellingham. He explains why he left WWU early to accept an opportunity for graduate work at Caltech briefly before accepting a job at Fermilab where he worked in operations on the Main Ring and the Tevatron project. He describes the series of events leading to his work at SLAC, where he worked in operations and design on the LCLS, the SLC, and the NLC. Emma describes his work for the superconducting undulator for Argonne and Lawrence Berkeley Laboratories, and at the end of the interview he discusses his ongoing work on LCLS-II.
Interview with William Herrmannsfeldt, Staff Physicist at SLAC. Herrmannsfeldt recounts his German heritage, his upbringing in Ohio, and his early interests in physics which he pursued as an undergraduate at Miami University. He discusses his graduate work on beta decay and nuclear physics at the University of Illinois, under the direction of James Allen, and he describes his postdoctoral appointment at Los Alamos where he made detectors for bomb tests. Herrmannsfeldt explains the connection between his work at Los Alamos on electron optics and his initial research at SLAC, and he describes his work on linear accelerators. He describes his tenure as Secretary of the Advanced Development Group and his role at the AEC to concentrate on accelerator physics for Fermilab. Herrmannsfeldt explains the decision to move ahead with the PEP project and his LINAC work at Berkeley. Herrmannsfeldt explains the relevance of this research to nuclear fusion, and he describes some of the technical challenges in building the superconducting RF system. At the end of the interview, Herrmannsfeldt conveys the sense of fun he felt in learning new technological systems, the inherent challenges of beam dynamics, and he reflects on how SLAC has changed since its inception.