Mesons

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Stanley Wojcicki, professor emeritus in the Department of Physics at Stanford. Wojcicki recounts his family’s experiences in war-time Poland and his father’s work for the Polish government-in-exile in London. He discusses his family’s postwar escape to Sweden from the Communists before their passage to the United States. Wojcicki discusses his undergraduate experience at Harvard and the opportunities that came available as a result of Sputnik in 1957. He explains his decision to pursue his graduate research at Berkeley under the direction of Art Rosenfeld, and his realization at the time that Berkeley was at the forefront in the revolution of experimental elementary particle physics headed by Luis Alvarez and the bubble chamber technique used by his group. Wojcicki explains how SU(3) transitioned from a mathematical concept to a central component of particle physics, and he describes his postdoctoral work at Berkeley Laboratory and his NSF fellowship at CERN to work on K-meson beam experiments. He discusses his faculty appointment at Stanford and his close collaboration with Mel Schwartz using spark chambers. Wojcicki describes his advisory work for Fermilab and for HEPAP, and the controversy surrounding the ISABELLE project and the initial site and design planning of the SSC. He explains some of the early warning signs of the project’s eventual cancellation, and his work looking at charm particles at Fermilab from produced muons. Wojcicki explains that the endowed chairs named in his honor at Stanford were a retirement gift from his daughter Anne and her husband, Google co-founder Sergey Brin. Wojcicki reflects on his long career at Stanford, and he describes how the physics department has changed over the years and how government supported science has evolved. At the end of the interview, Wojcicki contrasts the sense of fundamental discoveries that permeated his early career, and he cites neutrino physics as a potentially promising area of significant discovery into the future.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Kenneth Lande, professor emeritus in the Department of Physics at the University of Pennsylvania. Lande recounts his early childhood in Austria and his family’s escape to New York City from the Nazis has a young boy. Lande describes his interest in science, which he developed during his time at Brooklyn Tech, which he pursued as an undergraduate at Columbia. He describes working on bubble chambers under the direction of Leon Lederman at Nevis Lab in Westchester, and why he gave no consideration to graduate schools other than Columbia. Lande discusses his research at Brookhaven and he describes the major projects of the early 1950s including the Cosmotron and Lederman’s cloud chamber. He describes his thesis research on K mesons and explains that he accepted a job offer at the University of Pennsylvania before he defended his dissertation. Lande describes Penn’s and Princeton’s joint effort to become competitive in accelerator physics, and he explains his growing involvement in neutrino physics and work at Los Alamos in the 1960s. He explains the need to work underground when studying neutrino events caused by cosmic rays, and he describes his involvement with the Homestake mine collaboration. Lande describes his research involving gallium at the Baksan Observatory in the Soviet Union, the importance of the Kamiokande experiment, and he provides a history of neutrino physics that connects Darwin to Hans Bethe. He compares his research at Brookhaven, Fermilab, and Los Alamos, and he explains why he discourages undergraduates from memorizing anything as a way to encourage critical thinking. At the end of the interview Lande reflects on how collaborations have grown enormously over the course of his career, and looking ahead, he sees his contributions to neutrino research as prelude to something much bigger and fundamental for future discovery.

Interviewed by
David Zierler
Interview dates
May 6 & 25, 2021
Location
Video conference
Abstract

Interview with David G. Hitlin, Professor of Physics at California Institute of Technology. Hitlin discusses his thesis work on high-resolution muonic X-ray studies with his advisor and mentor Chien-Shiung Wu, and his subsequent transition to elementary particle physics at SLAC. He relates his experiences with kaon physics as a member of Mel Schwartz’s group at SLAC and Stanford. As a member of the Richter group at SLAC he worked on the Mark II experiment and then founded the Mark III experiment at SPEAR. After moving to Caltech in 1979, he worked on the SLD experiment at the SLC and then as founding Spokesman of the BABAR experiment at PEP-II. The interview ends with a discussion of his current involvements with the Fermilab experiment Mu2e and the nascent SLAC experiment LDMX.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Warren W. Buck, Chancellor Emeritus, Professor of Physics Emeritus at the University of Washington at Bothell, and Adjunct Professor of Physics and Special Advisor to the President for Equity in the 21st Century at William and Mary. Buck recounts his upbringing in segregated Washington DC, his early interests in science, and the opportunities that led to his admission to Lincoln University for his undergraduate degree before transferring to Morgan State. He discusses the racial strife and the civil rights movements of the late 1960s, his interest in physics as an undergraduate, and his decision to pursue a graduate degree at William and Mary. He explains his decision to leave after getting a master’s degree to teach at Bowie State and to be more involved in Black student organizing, and he describes his thesis research on deuteron theory under the direction of Franz Gross. Buck describes sailing in the Bahamas after graduate school and his appointments at Stony Brook and Los Alamos, and he explains his interests in nucleon-nucleon interactions. He describes a formative research year in Paris and his subsequent faculty position at Hampton University, his collaboration with Jefferson Lab, and his work introducing theoretical mesonic form factors. Buck discusses meeting Lillian McDermott and his recruitment to help build a new UW satellite campus at Bothell as chancellor. He surveys his accomplishments in that role and explains his decision to retire, and at the end of the interview, Buck discusses his interest in Buddhism and how Buddhist philosophy can be understood in the context of nuclear theory.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Blair Ratcliff, emeritus physicist and Permanent Member of the Laboratory Staff at SLAC. Ratcliff describes his ongoing work at the Lab since he retired in 2017, and he recounts his childhood in Iowa after World War II. He describes his undergraduate education in physics at Grinnell College and he explains the opportunities that led to his graduate work at Stanford, where he immediately gravitated toward SLAC as it was being built. Ratcliff describes working under the direction of Burt Richter in Group C, and he discusses his postgraduate research at CERN where the ISR colliders were starting. He discusses returning to SLAC to join David Leith on Group B and his work as spokesman on the spectroscopy program. Ratcliff narrates the origins of BaBar and his decision to create the Physics Analysis Group and to build up the SuperB factory. He discusses his advisory work for the Dune and LZ experiments, and he reflects on winning the APS Instrumentation Award. At the end of the interview, Ratcliff considers BaBar’s contribution to understanding the cosmic imbalance of matter and antimatter, and he conveys a sense of serendipity that BaBar came together at the right time, at the right place, and with the right people.

Interviewed by
Charles Weiner
Interview date
Location
Carl Anderson's office, Pasadena, California
Abstract

Anderson talks almost exclusively about his work during the thirties with particles of high energy involved in nuclear reactions. He covers in detail his discovery of the positive electron, his pair production work with gamma rays, his expedition to Pike’s Peak with Neddermeyer and their discovery of the mesotron. He mentions that it was in his speech accepting the Nobel Prize in 1936 that he first mentioned the possibility of negative and positive particles of intermediate mass. After noting the absence of any cosmic ray work during the war years, he mentions the postwar development of cosmic ray work into high energy physics.

Interviewed by
David Zierler
Interview date
Location
Remote Interview
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Samuel Aronson, Director Emeritus of Brookhaven National Laboratory. He discusses his more recent work as director of the RIKEN Institute and his involvement with the National Offshore Wind R&D Consortium. Aronson recounts his childhood on Long Island, and he describes the impact of Sputnik on him personally and on the country generally. He describes his undergraduate education at Columbia and the relationship he developed with Mel Schwartz, and he discusses Schwartz’s collaborations with Leon Lederman and Jack Steinberger. Aronson describes his decision to pursue his graduate degree at Princeton, and his interest in working at the Princeton-Pennsylvania Accelerator Center. He discusses his involvement in the study of the decay of neutral K mesons into a pion and an electron and a neutrino. Aronson recounts his work with Valentine Telegdi at the Fermi Institute, and he describes Telegdi’s research at the ZDS in Argonne in kaons. He discusses his faculty appointment at the University of Wisconsin and his research on neutral kaons, and he describes the fundamental and concurrent work going on at Brookhaven and SLAC. Aronson explains the origins of his collaboration with Ephraim Fischbach on the Fifth Force, and he describes his attraction in moving to Brookhaven where the ISABELLE proton-proton collider was in development. He describes the Relativistic Heavy Ion Collider and PHENIX program, and he explains his promotions and increasing responsibilities culminating in his being named director of Brookhaven. Aronson discusses the rise of cosmology from within the field of particle physics, and he describes the role of DOE in supporting basic science at the lab. At the end of the interview, Aronson shares his views on the future of particle physics and some major outstanding questions that will continue to animate the field. 

Interviewed by
David Zierler
Interview date
Location
Remote Interview
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Francis Halzen, professor of physics at the University of Wisconsin and principal investigator for the IceCube Project. Halzen describes his involvement in the origins of the project in 1990, and he recounts his childhood in Belgium and the ordeals his family experienced during World War II. He discusses his undergraduate and graduate education at Louvain University, and he describes his developing interests in group theory and quark theory. Halzen discusses his research on non-relativistic quarks bound in mesons under the direction of Frans Cerulus, and he describes his postdoctoral research at CERN on duality between resonances and particle exchanges. He discusses his subsequent work at Brookhaven and the initial goal of finding the W boson with the ISABELLE program, and he describes the events leading to his joining the faculty in Madison. Halzen describes the leading position Wisconsin enjoyed in high-energy physics, the transitional period he found himself in with the advent of QCD, and the importance of the research being conducted at Argonne, SLAC and Fermilab over the years. He describes the origins of the AMANDA project and he explains the relevance of building a kilometer cube detector for neutrino astronomy. Halzen discusses the complementary relationship between cosmic ray and particle physics, and he explains why the IceCube project needed to be as large as it is to detect the sources of cosmic rays. He explains why Antarctica is an ideal site to detect neutrinos and what it would take to create a standard neutrino model. Halzen describes the magnitude of the event if IceCube was able to detect a neutron start merger in neutrinos, gamma rays and gravitational waves, and at the end of the interview, he describes the future goals of IceCube and how it will continue to expand our understanding of the universe. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Vera Lüth, Professor Emerita at SLAC. Lüth recounts her childhood in Lithuania and her German family background, and her precarious experiences during and after World War II. She describes her undergraduate studies at Mainz University in the Federal Republic of Germany, and what it was like as one of the few women enrolled in science classes. Lüth explains her decision to transfer to the University of Heidelberg and her formal introduction to experimental particle physics at the Institute for High Energy Physics and then at CERN. She describes her research using bubble chambers to analyze pion-proton interactions, and the formative influence of Jack Steinberger during her time at CERN, and she offers a precis on his accomplishments up to the time of their collaboration. Lüth describes her research on signal decays involving charged particles which was located at CERN while she was a graduate student from Heidelberg, and she situates her research within the broader advances occurring in experimental particle physics at the time. She explains the opportunities leading to her postgraduate research at SLAC, she conveys the excitement of joining the Lab right at the time of the “November Revolution” of 1974, and she describes watching Panofsky walking around saying “Oh my God, Oh my God...” Lüth describes the independent and concurrent discovery made by Sam Ting at Brookhaven, and she explains the importance of theorists’ calculations, including those by Dave Jackson in understanding the resonances. She explains the process leading to the formal observation of “open charm” mesons, her early collaborations with Martin Perl, and the significance of the Mark II data derived at SPEAR. Lüth explains her decision to join the California Seismic Safety Commission project and some of the disconnects with the Department of Energy that were suggestive of the eventual fact that the endeavor was not viable. She discusses the origins of the BaBar project and its search for CP violation in B meson decays and she explains why laws of conservation have long fascinated her. Lüth explains her decision to retire at a relatively young age, and she reviews her numerous contributions in an advisory capacity over the past decade. At the end of the interview, Lüth reflects on her major contributions to the field, the larger-than-life stature of Panofsky, the foundational research of particle physics as an entrée to cosmology, and she describes some of the major and exciting future endeavors at SLAC.

Interviewed by
David Zierler
Interview date
Location
video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Marshall Baker, professor of physics emeritus at the University of Washington. He recounts his childhood in Salem, Massachusetts, and he describes his undergraduate experience at Harvard, where he majored in physics. Baker describes the formative influence of Julian Schwinger, and he discusses his first year of graduate school at Caltech, where he studied with Richard Feynman and Frederik Zachariasen. He explains his motivation to return to Harvard to complete his graduate research under Schwinger on the interactions of mesons and nucleons at low energy. Baker discusses his postdoctoral research at Stanford to be the “house theorist” for the Stanford Linear Accelerator and his collaborations with Shelly Glashow and Charlie Sommerfield. He describes his work as a junior faculty member at Stanford and the enjoyment he felt teaching quantum field theory as a student of both Feynman and Schwinger. Baker explains his decision to join the faculty at the University of Washington where he worked closely with Ken Johnson on quantum electrodynamics. Baker explains that his hire was part of a broader effort by the department to improve in elementary particle physics, and he describes the broader advances in the field during the 1960s in understanding hyperons and mesons and S-matrix theory. He explains the value of his collaborations with Soviet physicists and the significance of Gell-Mann’s quark model. Baker discusses his collaborations in the mid-1980s with Zachariasen on finding nonperturbative solutions for the gluon propagator which led to an approximate solution of QCD, he explains how a theoretical problem can take 15 years to solve and why the feedback mechanisms for success are more difficult to ascertain than is true in experimentation. Baker discusses his interest in string theory and Bari measurements in the years leading up to his retirement, and he explains why he remains hopeful that this research will yield fundamental understanding about the part of the field between a quark and an antiquark that produces the confining force. At the end of the interview, Baker emphasizes the importance of always staying in learning mode, because discovery in theory requires openness always to new fields of inquiry.