Neutrinos

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Murdock Gilchriese, Senior Physicist at Lawrence Berkeley National Lab. He discusses his contribution to the major project, LUX-ZEPLIN (LZ) and the broader search for dark matter, he recounts his parents’ missionary work, and his upbringing in Los Angeles and then in Tucson. Gilchriese describes his early interests in science and his undergraduate experience at the University of Arizona, where he developed is expertise in experimental high energy physics. He discusses his graduate work at SLAC where he worked with Group B headed by David Leith, and he describes his research in hadron spectroscopy. Gilchriese explains his postdoctoral appointment at the University of Pennsylvania sited at Fermilab to do neutrino physics before he accepted his first faculty position at Cornell to help create an e+/e- collider and the CLEO experiment. He discusses the inherent risk of leaving Cornell to work for the SSC project with the central design group, and then as head of the Research Division. Gilchriese describes his subsequent work on the solenoidal detector and his transfer to Berkeley Lab to succeed George Trilling and to join the ATLAS collaboration. He explains the migration of talent and ideas from the SSC to CERN and discusses the research overlap of ATLAS and CMS and how this accelerated the discovery of the Higgs. Gilchriese describes his next interest in getting into cosmology and searching for dark matter as a deep underground science endeavor, and he explains why advances in the field have been so difficult to achieve. At the end of the interview, Gilchriese describes his current work on CMB-S4, his advisory work helping LBNL navigate the pandemic, and he reflects on the key advances in hardware that have pushed experimental physics forward during his career.

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Herman B. White, physicist at Fermi National Accelerator Laboratory. White recounts his childhood in Tuskegee, Alabama and growing up during segregation. He discusses his early interests in science and his decision to enroll at Earlham College in Indiana as an undergraduate. White then describes his time at Michigan State University as a graduate student, during which he also held a position as a resident research associate at Argonne National Laboratory. Dr. White talks about his transition from nuclear physics to particle physics upon completing his master’s degree at MSU. He discusses the events that led him to accept a position at Fermilab rather than immediately pursue a PhD. White was the first African-American scientist appointed at Fermilab, and he recounts his early years there being mentored by Raymond Stefanski. He then describes his research fellowship at Yale and his non-traditional path to getting a PhD in 1991 from Florida State University. White talks about returning to Fermilab to work on kaon physics, and his eventual involvement in the Tevatron experiment. Toward the end of the interview, White reflects on the changes and trends he has seen in the research being done at Fermilab over the years, as well as his involvement in the National Society of Black Physicists.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Barry Barish, Linde Professor of Physics Emeritus at Caltech, where he retains a collaboration with LIGO, and Distinguished Professor of Physics at UC Riverside. Barish recounts his childhood in Los Angeles and emphasizes that sports were more important than academics to him growing up. He explains his decision to attend Berkeley as an undergraduate, where his initial major was engineering before he realized that he really loved physics, and where he was advised by Owen Chamberlain. Barish describes the fundamental work being done at the Radiation Lab and how he learned to work the cyclotron. He explains why Fermi became his life-long hero and why he decided to stay at Berkeley for graduate school, even though the school’s general policy required students to pursue their doctoral work elsewhere. Barish describes his graduate research under the direction of Carl Hemholz, and he explains how he developed a relationship with Richard Feynman which led to his postdoc and ultimately, his faculty appointment at Caltech. He discusses how his interest in neutrinos led to his work at Fermilab and why the big question at the time was how to discover the W boson. Barish describes his key interests in magnetic monopoles and neutrino oscillations, and he describes his involvement with the SSC project through a connection with Maury Tigner at Berkeley, which developed over the course of his collaborations with Sam Ting. He explains that his subsequent work with LIGO never would have happened had the SSC been viable, and he describes his early connection as a young student learning general relativity as a connecting point to LIGO. Barish describes his general awareness of what Rai Weiss had been doing prior to 1994 and he relates the state of affairs of LIGO at that point. He conveys the intensity of his involvement from 1994 to 2005 and he describes the skepticism surrounding the entire endeavor and what success would have looked like without any assurance that the experiment would actually detect gravitational waves. Barish describes the road to detection as one of incremental improvements to the instrumentation achieved over several years, including the fundamental advance of active seismic isolation. He narrates the day of the detection, and he surveys the effect that the Nobel Prize has had on the LIGO collaboration and its future prospects. Barish notes the promise that AI offers for the future of LIGO, and he prognosticates the future viability of the ILC. At the end of the interview Barish explains what LIGO has taught us about the universe, and what questions it will allow us to ask in the future as a result of its success. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Kenneth Lande, professor emeritus in the Department of Physics at the University of Pennsylvania. Lande recounts his early childhood in Austria and his family’s escape to New York City from the Nazis has a young boy. Lande describes his interest in science, which he developed during his time at Brooklyn Tech, which he pursued as an undergraduate at Columbia. He describes working on bubble chambers under the direction of Leon Lederman at Nevis Lab in Westchester, and why he gave no consideration to graduate schools other than Columbia. Lande discusses his research at Brookhaven and he describes the major projects of the early 1950s including the Cosmotron and Lederman’s cloud chamber. He describes his thesis research on K mesons and explains that he accepted a job offer at the University of Pennsylvania before he defended his dissertation. Lande describes Penn’s and Princeton’s joint effort to become competitive in accelerator physics, and he explains his growing involvement in neutrino physics and work at Los Alamos in the 1960s. He explains the need to work underground when studying neutrino events caused by cosmic rays, and he describes his involvement with the Homestake mine collaboration. Lande describes his research involving gallium at the Baksan Observatory in the Soviet Union, the importance of the Kamiokande experiment, and he provides a history of neutrino physics that connects Darwin to Hans Bethe. He compares his research at Brookhaven, Fermilab, and Los Alamos, and he explains why he discourages undergraduates from memorizing anything as a way to encourage critical thinking. At the end of the interview Lande reflects on how collaborations have grown enormously over the course of his career, and looking ahead, he sees his contributions to neutrino research as prelude to something much bigger and fundamental for future discovery.

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, Jo Dunkley, professor of physics and astrophysical sciences at Princeton, discusses her life and career. Dunkley describes the nature of this dual appointment and she recounts her childhood in London and her all-girls school education. She describes her undergraduate experience at Cambridge and the formative influence of Malcolm Longair’s class on relativity. Dunkley explains that pursuing a graduate degree in physics was not a foregone conclusion, and that she initially considered a career in international development. She discusses her motivation to study under the direction Pedro Ferreira at Oxford to work on the cosmic microwave background experiments. Dunkley conveys the immediate importance of Wilkinson Microwave Anisotropy Probe (WMAP) on her thesis research and the opportunities that led to her postdoctoral work at Princeton to work with David Spergel and Lyman Page on WMAP. She explains her decision to return to the Oxford faculty to continue working with Ferreira and the origins of her involvement in the Atacama Cosmology Telescope project and subsequently the Large Synoptic Survey Telescope (LSST, now the Vera C. Rubin Observatory) endeavor and her work on it with Ian Shipsey. Dunkley discusses the challenges in maintaining a work-life balance during maternity leaves at Oxford and then at Princeton, after she joined the faculty in 2016. She describes the many exciting projects her graduate students are working on and she explains her current interests in understanding the Hubble constant. At the end of the interview, Dunkley surveys the major unanswered questions in contemporary cosmology, the viability of discovering the mass of neutrinos, and what the interplay between theory and experimentation might hold for the future.

Interviewed by
David Zierler
Interview dates
May 20 and June 10, 2020
Location
Video conference
Abstract

In this interview, Fred Gilman, Buhl Professor of Theoretical Physics at Carnegie Mellon University discusses his career as a theoretical physicist and hopes for the future. He discusses being a postdoc in the theoretical physics group at SLAC and his work on deep inelastic scattering. He details his involvement with the Superconducting Super Collider and the eventual decision to shut down its construction. Gilman reflects on his involvement with the Snowmass Conference as well as his work on the High-Energy Physics Advisory Panel. Lastly, Gilman speaks about his excitement for future discoveries from the Vera Rubin Observatory and his hopes for Carnegie Mellon and their involvement with physics.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Marc Kamionkowski, William R. Kenan, Jr. Professor of Physics and Astronomy at Johns Hopkins University. He discusses his family heritage of Ashkenazi Jews who left Eastern Europe for Argentina, and his father’s medical research which took the family to Cleveland. Kamionkowski recounts his childhood in Shaker Heights, and he describes his undergraduate work at Washington University, where he switched from pre-med to physics to work with Marty Israel and Joe Klarmann. Despite his lack of preparation, Kamionkowski explains his admission to the University of Chicago, and he describes “the bug” that made him focus on physics and drive to succeed in quantum mechanics and understand quantum field theory. He discusses his thesis research under the direction of Michael Turner on energetic neutrinos from WIMP annihilation in the sun. Kamionkowski discusses his post-doctoral research at the Institute for Advanced Study where he was in Frank Wilczek’s particle theory group. He describes his first faculty appointment at Columbia and how experimental advances had opened up opportunities in cosmology. He explains his decision to move to Caltech because of its strength in theoretical astrophysics and where he became director of the Moore Center. Kamionkowski discusses his subsequent move to Johns Hopkins, and he surveys his recent projects on the Hubble Tension and early dark energy. At the end of the interview, Kamionkowski explains why he has always valued research that bridges the divide between theory and experimentation and why he expects this will continue to inform his broad research agenda.

Interviewed by
David Zierler
Interview dates
January 30, February 6, 13, 20 & 27, 2021
Location
Video conference
Abstract

In this interview Dr. Kenneth Watson, Dr. Richard Garwin, Dr. Curtis Callan, and Dr. Roy Schwitters participate in a roundtable discussion on the origins and early history of the JASON scientific advisory group. Watson, an emeritus from University of California San Diego Scripps Institution of Oceanography, discusses the early efforts of Charles Townes and Marvin Stern in forming JASON. Garwin, IBM Fellow Emeritus at the IBM Thomas J. Watson Research Laboratory of IBM, reflects upon IDA, the management organization that allowed for the formation of the JASON group. Callan, Professor of Physics at Princeton University, discusses the Charney Report and the sponsorship of Ari Patrinos of the Department of Energy, and his relationship with JASON. Schwitters, Regents Professor Emeritus from University of Texas Austin, and Garwin detail JASON’s 1980 report on tunnel detection. The group reflects upon the launch of Sputnik in 1957, and how it added urgency to the creation of JASON. Watson and Garwin discuss the early agenda of JASON and their focus on detection of missile launches, nuclear effects, and Nick Christofilos work with particle beam weapons. They discuss the involvement of JASON in the Vietnam War effort and how some members were targeted by protestors for their involvement. Watson and Schwitters reflect on the presence of Claire Max and the time it took to get more women involved in JASON in face of the traditional “boys club” atmosphere that was present in professional circles at the time. Garwin speaks about the development of the sonic boom report. Callen talks about his study on neutrino detection and the purpose of JASON in a post-Cold War era. He also discusses JASONs work on CHAMMP, Computer Hardware, Advanced Mathematics and Model Physics. The group describes the Human Genome project of the late 1990s. Schwitters and Garwin discuss how JASON can offer independent judgment in ways U.S. Intelligence agencies cannot, such as in 2009 when they were commissioned to study North Korean nuclear capability. Lastly, Watson speaks about how he believes GPS will become an important issue of study for JASON in the future, a point which is furthered by Garwin who also cites cybersecurity in general as a main focal point for JASON moving forward.

Interviewed by
David Zierler
Interview dates
May 20 and June 10, 2020
Location
Video conference
Abstract

In this interview, Fred Gilman, Buhl Professor of Theoretical Physics at Carnegie Mellon University discusses his career as a theoretical physicist and hopes for the future. He details his early passion for theoretical physics and his decision to attend Michigan State University for his undergraduate degree. He discusses attending Princeton University for graduate school and his thesis on Baryon Electromagnetic Mass Differences with his advisor Murph Goldberger. Gilman describes his time at Caltech as an NSF postdoctoral fellow. Gilman reflects on his involvement with the Snowmass Conference as well as his work on the High-Energy Physics Advisory Panel.