Quantum theory

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Dale Van Harlingen, Professor of Physics at the University of Illinois, Urbana-Champaign. He recounts his childhood in Ohio and his undergraduate education at OSU in physics and his early work on SQUIDS. Van Harlingen discusses his mentor Jim Garland, and he explains his decision to stay at OSU for graduate school to develop SQUID devices to make phase-sensitive measurements. He explains the opportunities that gained him a postdoctoral appointment at the Cavendish Laboratory in Cambridge where he developed his expertise in the Josephson Effect, and where he met John Clarke, who offered him a subsequent postdoctoral position at UC Berkeley. Van Harlingen describes his foray using SQUIDS to push the quantum limit, and he explains his decision to join the faculty at Illinois, where he was impressed both with the quality of the research and how nice everyone was. He describes joining the Materials Research Laboratory and the development of the Micro and Nanotechnology Laboratory, and he conveys his admiration for Tony Leggett. Van Harlingen discusses his research in NMR microscopy, grain boundary junctions, scanning tunneling microscopy, vortex configurations, and he describes his current interest in unconventional superconductors. At the end of the interview, Van Harlingen conveys his excitement about the national quantum initiative as a major collaboration between universities and National Labs, and he explains his motivation to understand if Majorana fermions actually exist.

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, Saul Perlmutter, Professor of Physics at UC Berkeley and Staff Scientist and senior faculty member at Lawrence Berkeley National Laboratory, discusses his life and career. Perlmutter shares that his research has not been slowed down by the pandemic by happy coincidence that he is currently focused on remote data analysis, and he recounts his childhood in Philadelphia where he was educated in Quaker schools. He discusses his early fascination with quantum mechanics and his decision to go to Harvard for his undergraduate education, where he cemented his interests in experimental physics. Perlmutter explains his decision to go to Berkeley for graduate school, where he worked in Buford Price’s group before Richard Muller became his graduate advisor. He discusses his early awareness of the cosmic microwave background and how he became involved with robotic searches for supernovae. Perlmutter describes the importance of NASA’s BITNET program as a way to connect observatory data worldwide to the computer systems at Berkeley, and he explains the intellectual and observational connections between the inflation, expansion, and acceleration of the universe. He discusses his postdoctoral research at Berkeley, and the circumstances leading to him becoming leader of the supernova group and how the DOE became more involved in astrophysics funding. Perlmutter explains the group’s focus on deceleration and he conveys the difficulties in scheduling telescope time to demonstrate spectroscopy proof of type Ia supernovae. He describes the origins of the SNAP satellite project, some of the early theoretical discussions on the nature of dark energy, and when, finally, his group secured long-term support from the Lab. Perlmutter narrates his first interactions with Brian Schmidt and Adam Riess and he describes the batch technique that could predict the discovery of supernovae, which vastly improved the efficiency of scheduling time on large telescopes. He explains the role of dark matter in speeding up the universe’s expansion, and he narrates the celebration with his team when he won the Nobel Prize and how he has chosen the use the political platform that comes with this recognition. Perlmutter discusses his interest in studying climate change, and at the end of the interview, he conveys his excitement about future observational discovery in astrophysics and cosmology.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Neal Lane, University Professor Emeritus and Professor Emeritus of Physics and Astronomy at Rice University, with an additional affiliation at the Baker Institute for Public Policy. Lane recounts his childhood in Oklahoma and his education at the University of Oklahoma, where Chun Lin became his thesis advisor for his research on the excitation of a sodium atom from its ground state. He discusses his postdoctoral appointment at Queen’s University of Belfast to work with Alex Dalgarno before taking a position at JILA in Boulder. Lane describes his work with Sydney Geltman and the opportunity to take a faculty position at Rice, and he discusses his role as NSF physics division director. He narrates his decision to become chancellor at the University of Colorado, Colorado Springs, before returning to Rice to serve as provost. Lane describes how the Clinton administration invited him to lead the NSF. He explains the importance of direct communication with OMB, his relationship with Al Gore, and the key guidance offered by National Academy reports. Lane describes the LIGO effort from his vantage point at the NSF, and he explains his time as director of OSTP and Assistant to the President for Science and Technology. Lane discusses his work for PCAST and in the creation of the NNSA, and he describes returning to Rice after Gore lost the presidency, where the Baker Institute allowed him an environment to continue working in science and policy. At the end of the interview, Lane emphasizes the power of human connections as the foundation of all good science and policy endeavors.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Dean Zollman discusses: interests in current physics education research (PER); family background and childhood; PhD at Maryland under Carl Levinson and Manoj Banerjee; involvement in civil rights movement; postdoc at Kansas State; collaborations with Bob Fuller and Tom Campbell; involvement with American Association of Physics Teachers (AAPT); Jack Renner’s research on the intellectual development of college students; overview of the big names and ideas in PER in the early-to-mid 70s; research on how to meet students’ current developmental levels and capabilities; hands-on and visual approaches to physics learning; NSF-funded work at University of Utah, developing instructional laser discs with Bob Fuller and Tom Campbell; forays into using video for physics instruction and early application of computers to physics education; Fulbright at University of Munich; Fascination of Physics collaboration with his partner J.D. Spears; teaching quantum mechanics visually; winning the Milikan Award; the Physics InfoMall CD-ROM project; relationship with NSF; Center for Research and Innovation in STEM Education project and COVID’s damage to its realization; Oersted Medal; crossovers with field of psychology in researching how learning happens; internet-based Pathways project for high school instructors; collaborations with the International Commission on Physics Education; the excitement of helping people learn; and the hope that innovative teaching strategies will draw in a more diverse student body to solve the big physics questions of our time. Toward the end of the interview, Zollman looks forward to continuing PER both on the fundamentals of how students learn as well as on applied methods for teaching. He notes that the quest to understand the mechanisms of learning invite a more interdisciplinary approach going forward. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Matthew Fisher, professor of physics at UC Santa Barbara. Fisher recounts his early childhood in London as the son of a prominent physicist, and his upbringing in Ithaca where his father was on the physics faculty. He discusses his undergraduate experience at Cornell, where he started in engineering but gravitated toward physics, and he reflects on a conversation with a graduate student, which – more than any influene from his father or his brother, also a prominent physicist – sparked his interest. Fisher describes his initial graduate work at MIT, where he focused on experimental condensed matter research in the lab of Bob Birgeneau, before he transferred to the University of Illinois at Champaign-Urbana to re-focus on condensed matter theory, with a special interest in quantum mechanics under the direction of Tony Leggett. He explains the mental health issues he began to suffer from in graduate school, which extended into his postdoctoral, and then full time, work at IBM, until a psychiatrist prescribed him medication that essentially restored him to a state of mental health. Fisher describes the opportunities leading to his faculty appointment at UC Santa Barbara, and he discusses his newfound interests in high temperature superconductors, the fractional quantum Hall effect, and the localization of bosons. He discusses his ongoing interest in quantum mechanics, quantum spin liquids and quantum phase transitions, and he describes his long term collaboration with Charlie Kane. Fisher explains the singular advances Phil Anderson made to the field, and what supercomputing has allowed in the last twenty years that was not possible in the previous twenty years. He connects his mental health challenges with his recent interests in the concept of a quantum mind, or the possibility that the brain operates quantum mechanically. Fisher stresses that the field is nascent and that it is too early to tell if his preliminary ideas will be substantiated, and why a greater understanding of both evolution and the nature of consciousness is crucial to developing of this path of inquiry. He explains the implications of the notion of free will if the brain operates according to quantum processes, and he describes how this research may bear out experimentally. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

n this interview, Stephon Alexander discusses current research into quantum gravity and possible extensions to string theory; work to merge quantum mechanics and general relativity; research into the connection between music and cognitive science; experience as a jazz musician; intersections of philosophy and physics; experience as president of the National Society of Black Physicists (NSBP); challenges and stigmas associated with being a Black academic; growing up in both rural Trinidad and the Bronx; undergraduate experience at Haverford; graduate work at Brown; guidance from Robert Brandenberger into the field of quantum gravity, applying particle physics to astrophysics and cosmology; thesis research on solitons and topological defects and its role in string cosmology and theory; decision to take postdoc at Imperial College London focusing on M-theory and integrating string theory with cosmic inflation; influence of Alan Guth; work on D-brane driven inflation; experience in the underground London music scene; decision to go to SLAC in Stanford and work under Michael Peskin; loop quantum gravity; time as faculty at Penn State; the role and responsibility of the Black academic; recruitment by Brown University; intellectual influence of David Finkelstein; the process of becoming president of NSBP. Toward the end of the interview, Alexander reflects on his books, The Jazz of Physics and Fear of a Black Universe; being an outsider in the field of physics; and revisits his current work on quantum gravity. He emphasizes the importance of in-person collaboration and improvisation. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with William Gelbart, Distinguished Professor of Chemistry and Biochemistry at UCLA. The interview begins with Gelbart discussing his research pertaining to COVID-19 and creating a vaccine. Gelbart then recounts his childhood in New York and describes growing up with a mathematician father. He takes us through his undergraduate years at Harvard where he majored in chemistry and physics. Gelbart speaks about his grad school experience at the University of Chicago and the trends in chemical physics at the time. He describes working under the mentorship of Stuart Rice, Karl Freed, and Joshua Jortner. Gelbart then details the factors that led him to a postdoctoral fellowship in Paris, followed by a postdoctoral position at UC Berkeley, at which time he transitioned into physical chemistry. Gelbart also discusses his subsequent move to UCLA and his collaborations with Avi Ben-Shaul. He explains his shift into biology and virus research, and his recent work on RNA gene expression and cancer vaccine research.

Interviewed by
David DeVorkin
Interview dates
September 10 & 15, 2021
Location
Video conference
Abstract

Interview with Jay Pasachoff, Field Memorial Professor of Astronomy at Williams College. Pasachoff discusses his childhood in New York City and his early interests in astronomy, telescopes and math. He recalls participating in a summer math program at Berkeley after his high school graduation, before he enrolled at Harvard as an undergrad. He recounts being invited to partake in observational research at Sacramento Peak Observatory, where he worked with Jacques Beckers and Bob Noyes. Pasachoff then explains his decision to continue at Harvard for his graduate studies, where Bob Noyes became his thesis advisor. He remembers finishing his PhD while also working at the Air Force Cambridge Research Laboratory, doing radio astronomy work. Pasachoff discusses the events that led to his postdoc at Caltech, and his subsequent move to Williams College. Throughout the interview, Pasachoff remembers many of the solar eclipses he has observed and his research surrounding them. He also discusses the many textbooks he has written over the years. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Joel Primack, Distinguished Professor of Physics Emeritus at the University of California, Santa Cruz. Primack discusses what he has been able to do in his free time since his retirement, including writing papers, giving lectures, hosting meetings at UC Santa Cruz, leading international collaborations, and supervising research. He sees the new data coming from the Vera Rubin Observatory and the Gaia Survey as exciting developments in the realm of astrophysics, and he is looking forward to adding to this data when we begin receiving images from the James Webb Space Telescope. Primack discusses his work with various simulations that he has utilized to understand what may be occurring within galaxies, and the growing importance of astrobiology in these simulations. He takes us back into his early years in Montana, where his passion for science began to develop, and how his high school education and internships led him to Princeton University for his undergraduate career. While at Princeton, Primack took classes from John Wheeler, worked at the Jet Propulsion Lab under Bill Pickering, and participated in the Students for a Democratic Society, where his interest in the combination of politics and science began to grow. Primack discusses how important the communication between politicians and scientists is, and he saw this need for improved communication early on. He started the Congressional Science and Technology Fellowship program as a preliminary way to work on the relationship between government and science. He then recounts his experiences at Harvard University and his eventual move to Santa Cruz, where he continued working on dark matter and dark energy, among other things. He remarks on his relationship and work with Nancy Abrams, including the courses they taught and the books they wrote together. He ends the interview talking about his family, his recovery from cancer, and the people he’s looking forward to working with in the future.

Interviewed by
Eline V. A. van den Heuvel
Interview date
Interview dates
January 14, February 8, and May 11, 2020
Location
Kensington Park Senior Living, Kensington, Maryland, USA
Abstract

Physics Graduate student Eline V. A. van den Heuvel (University of Amsterdam) interviews Professor Emeritus of Physics and Senior Research Scientist at the University of Maryland Charles W. Misner. After obtaining his BA at the University of Notre Dame in 1952, Prof. Misner continued his education at Princeton University, where he completed his PhD in Physics under supervision of Prof. John. A. Wheeler (1911-2008) in 1957. In the spring semester of 1956, Prof. Wheeler fulfilled the Lorentz professorship at Leiden University, the Netherlands, accompanied by his student Misner. Prof. Misner discusses this trip, focusing on his personal experience and his work on the Already Unified Field. He also discusses Wheeler’s relativity work and possible motivations for Wheeler to go to Leiden. The remainder of the interview deals with the many-worlds interpretation of Dr. Hugh Everett, a friend of Misner and former a PhD student of Wheeler, and Misner expresses his disappointment in how the physics community has treated Everett.