Radioactivity

Interviewed by
Charles Weiner
Interview date
Location
James Clerk Maxwell Physics Building, Edinburgh, Scotland
Abstract

Undergraduate atmosphere at University of Cambridge: course work, lecturers, extra-curricular groups, training experiments in radioactivity and scintillation-counting; obtains old radon tubes for neutron experiments while doing radioactivity work with Robert W. Woods at Johns Hopkins University in 1929; discussions with James Chadwick of Joliot papers, 1932; move with Chadwick to University of Liverpool, 1935; return to University of Cambridge 1936; reaction to selection of William Bragg as Ernest Rutherford's successor; shift in Cavendish Laboratory's world role in nuclear physics; World War II service at Cambridge: administration, teaching, measurement of fission cross-sections; move to University of Edinburgh to replace Charles D. Barkla, 1945.

Interviewed by
Charles Weiner
Interview date
Location
Massachusetts Institute of Technology, Cambridge, Massachusetts
Abstract

Family background; grows up in California; early interest in electronics. Undergraduate and graduate studies at Caltech. Strong interest in history of science as undergraduate. Ph.D. in physics, 1932. University of California at Berkeley, 1932-1934. MIT from 1934; founder of the Radioactivity Center. Starts first course designated "nuclear physics," January 1935. Strong interest in study of radium poisoning; radium tolerance in humans, cancer research. World War II work, postwar work; establishment of Laboratory for Nuclear Science and Engineering. Markle Foundation supplies funds for the Radioactivity Center's Cyclotron; the 1940 Conference on Applied Nuclear Physics (sponsored by the American Institute of Physics and MIT); World War II work at the Radioactivity Center at MIT; radium dial paint studies; radium and plutonium safety regulations (Glenn Seaborg); work relations with the Manhattan Project; the MAMI (marked mine) project reveals indication of German plutonium project. Also prominently mentioned are: Carl David Anderson, Joe Aub, Joe Boyce, Vannevar Bush, Evan Byers, John Cockcroft, Robert Colenko, Arthur Holly Compton, Karl Taylor Compton, Enrico Fermi, Horace Ford, Ralph Howard Fowler, George Gamow, Newell Gingrich, Clark Goodman, Leslie Richard Groves, George Harrison, Hobart, Elmer Hutchisson, Ray Keating, Arthur Kip, Pinkie Klein, Rudolf Ladenburg, Charles Christian Lauritsen, Thomas Lauritsen, Ernest Orlando Lawrence, Gilbert Newton Lewis, Willard Frank Libby, Milton Stanley Livingston, Leonard Benedict Loeb, Sam Lynd, Edwin Mattison McMillan, Robert Andrews Millikan, J. Robert Oppenheimer, Elmer Robinson, Ernest Rutherford, John Clarke Slater, Sorensen, Robert Jamison Van de Graaff, Ernest Thomas Sinton Walton, Martin Wittenberg, Jerrold Reinach Zacharias; American Institute of Physics; American Cancer Society, Bausch and Lomb Co., National Research Council, Radiation Standards Committee, United States Federal Cancer Commission, United States Food and Drug Administration, United States National Bureau of Standards, United States Navy, University of Rochester, University of Utah Salt Lake City Project, Wesleyan University, World War I, and World War II.

Interviewed by
Charles Weiner
Interview date
Location
Massachusetts Institute of Technology, Cambridge, Massachusetts
Abstract

Family background; grows up in California; early interest in electronics. Undergraduate and graduate studies at Caltech. Strong interest in history of science as undergraduate. Ph.D. in physics, 1932. University of California at Berkeley, 1932-1934. MIT from 1934; founder of the Radioactivity Center. Starts first course designated "nuclear physics," January 1935. Strong interest in study of radium poisoning; radium tolerance in humans, cancer research. World War II work, postwar work; establishment of Laboratory for Nuclear Science and Engineering. Markle Foundation supplies funds for the Radioactivity Center's Cyclotron; the 1940 Conference on Applied Nuclear Physics (sponsored by the American Institute of Physics and MIT); World War II work at the Radioactivity Center at MIT; radium dial paint studies; radium and plutonium safety regulations (Glenn Seaborg); work relations with the Manhattan Project; the MAMI (marked mine) project reveals indication of German plutonium project. Also prominently mentioned are: Carl David Anderson, Joe Aub, Joe Boyce, Vannevar Bush, Evan Byers, John Cockcroft, Robert Colenko, Arthur Holly Compton, Karl Taylor Compton, Enrico Fermi, Horace Ford, Ralph Howard Fowler, George Gamow, Newell Gingrich, Clark Goodman, Leslie Richard Groves, George Harrison, Hobart, Elmer Hutchisson, Ray Keating, Arthur Kip, Pinkie Klein, Rudolf Ladenburg, Charles Christian Lauritsen, Thomas Lauritsen, Ernest Orlando Lawrence, Gilbert Newton Lewis, Willard Frank Libby, Milton Stanley Livingston, Leonard Benedict Loeb, Sam Lynd, Edwin Mattison McMillan, Robert Andrews Millikan, J. Robert Oppenheimer, Elmer Robinson, Ernest Rutherford, John Clarke Slater, Sorensen, Robert Jamison Van de Graaff, Ernest Thomas Sinton Walton, Martin Wittenberg, Jerrold Reinach Zacharias; American Institute of Physics; American Cancer Society, Bausch and Lomb Co., National Research Council, Radiation Standards Committee, United States Federal Cancer Commission, United States Food and Drug Administration, United States National Bureau of Standards, United States Navy, University of Rochester, University of Utah Salt Lake City Project, Wesleyan University, World War I, and World War II.

Interviewed by
Charles Weiner
Interview dates
May 2 and 3, 1972
Location
Massachusetts Institute of Technology, Cambridge, Massachusetts
Abstract

Family background; grows up in California; early interest in electronics. Undergraduate and graduate studies at Caltech. Strong interest in history of science as undergraduate. Ph.D. in physics, 1932. University of California at Berkeley, 1932-1934. MIT from 1934; founder of the Radioactivity Center. Starts first course designated "nuclear physics," January 1935. Strong interest in study of radium poisoning; radium tolerance in humans, cancer research. World War II work, postwar work; establishment of Laboratory for Nuclear Science and Engineering. Markle Foundation supplies funds for the Radioactivity Center's Cyclotron; the 1940 Conference on Applied Nuclear Physics (sponsored by the American Institute of Physics and MIT); World War II work at the Radioactivity Center at MIT; radium dial paint studies; radium and plutonium safety regulations (Glenn Seaborg); work relations with the Manhattan Project; the MAMI (marked mine) project reveals indication of German plutonium project. Also prominently mentioned are: Carl David Anderson, Joe Aub, Joe Boyce, Vannevar Bush, Evan Byers, John Cockcroft, Robert Colenko, Arthur Holly Compton, Karl Taylor Compton, Enrico Fermi, Horace Ford, Ralph Howard Fowler, George Gamow, Newell Gingrich, Clark Goodman, Leslie Richard Groves, George Harrison, Hobart, Elmer Hutchisson, Ray Keating, Arthur Kip, Pinkie Klein, Rudolf Ladenburg, Charles Christian Lauritsen, Thomas Lauritsen, Ernest Orlando Lawrence, Gilbert Newton Lewis, Willard Frank Libby, Milton Stanley Livingston, Leonard Benedict Loeb, Sam Lynd, Edwin Mattison McMillan, Robert Andrews Millikan, J. Robert Oppenheimer, Elmer Robinson, Ernest Rutherford, John Clarke Slater, Sorensen, Robert Jamison Van de Graaff, Ernest Thomas Sinton Walton, Martin Wittenberg, Jerrold Reinach Zacharias; American Institute of Physics; American Cancer Society, Bausch and Lomb Co., National Research Council, Radiation Standards Committee, United States Federal Cancer Commission, United States Food and Drug Administration, United States National Bureau of Standards, United States Navy, University of Rochester, University of Utah Salt Lake City Project, Wesleyan University, World War I, and World War II.

Interviewed by
Charles Weiner
Interview date
Location
Cornell University
Abstract

Natural radioactivity; ideas of nuclear constitution, size in 1920s; Gamow-Condon-Gurney theory of alpha decay 1928; discovery of neutron 1932; Cambridge as a center of research 1933; early theories of nuclear forces; analysis of short-range nuclear forces 1935-40; reasons for writing Rev. Mod. Phys. review articles 1935-37 and detailed review of articles' contents; beta decay and the neutrino hypothesis; application of group-theoretic methods to nuclear physics 1936-37; compound nucleus model 1936; nuclear models in general (compound nucleus, evaporation, liquid drop, direct interaction, statistical); contemporary knowledge of nuclear physics 1938-39; stellar energy production; energy limit on cyclotron; accelerators and theoreticians; nuclear physics at Los Alamos; post-war conferences; origins and development of the shell model of the nucleus; many-body theory in nuclear physics; current algebras in particle physics; origins and development of the optical model; of the collective model; autobiographical comments on political, social, scientific conditions in Germany and England in early 1930s ; nuclear studies at Cornell after the war; building the H-bomb; the Oppenheimer hearings; work as a consultant 1950-1970; involvement with PSAC 1956; views on disarmament; receipt of 1967 Nobel Prize.

Interviewed by
Charles Weiner
Interview date
Location
Cornell University
Abstract

Natural radioactivity; ideas of nuclear constitution, size in 1920s; Gamow-Condon-Gurney theory of alpha decay 1928; discovery of neutron 1932; Cambridge as a center of research 1933; early theories of nuclear forces; analysis of short-range nuclear forces 1935-40; reasons for writing Rev. Mod. Phys. review articles 1935-37 and detailed review of articles' contents; beta decay and the neutrino hypothesis; application of group-theoretic methods to nuclear physics 1936-37; compound nucleus model 1936; nuclear models in general (compound nucleus, evaporation, liquid drop, direct interaction, statistical); contemporary knowledge of nuclear physics 1938-39; stellar energy production; energy limit on cyclotron; accelerators and theoreticians; nuclear physics at Los Alamos; post-war conferences; origins and development of the shell model of the nucleus; many-body theory in nuclear physics; current algebras in particle physics; origins and development of the optical model; of the collective model; autobiographical comments on political, social, scientific conditions in Germany and England in early 1930s ; nuclear studies at Cornell after the war; building the H-bomb; the Oppenheimer hearings; work as a consultant 1950-1970; involvement with PSAC 1956; views on disarmament; receipt of 1967 Nobel Prize.

Interviewed by
Charles Weiner and Jagdish Mehra
Interview date
Location
Cornell University
Abstract

Natural radioactivity; ideas of nuclear constitution, size in 1920s; Gamow-Condon-Gurney theory of alpha decay 1928; discovery of neutron 1932; Cambridge as a center of research 1933; early theories of nuclear forces; analysis of short-range nuclear forces 1935-40; reasons for writing Rev. Mod. Phys. review articles 1935-37 and detailed review of articles' contents; beta decay and the neutrino hypothesis; application of group-theoretic methods to nuclear physics 1936-37; compound nucleus model 1936; nuclear models in general (compound nucleus, evaporation, liquid drop, direct interaction, statistical); contemporary knowledge of nuclear physics 1938-39; stellar energy production; energy limit on cyclotron; accelerators and theoreticians; nuclear physics at Los Alamos; post-war conferences; origins and development of the shell model of the nucleus; many-body theory in nuclear physics; current algebras in particle physics; origins and development of the optical model; of the collective model; autobiographical comments on political, social, scientific conditions in Germany and England in early 1930s ; nuclear studies at Cornell after the war; building the H-bomb; the Oppenheimer hearings; work as a consultant 1950-1970; involvement with PSAC 1956; views on disarmament; receipt of 1967 Nobel Prize.