Science and state

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Joel Primack, Distinguished Professor of Physics Emeritus at the University of California, Santa Cruz. Primack discusses what he has been able to do in his free time since his retirement, including writing papers, giving lectures, hosting meetings at UC Santa Cruz, leading international collaborations, and supervising research. He sees the new data coming from the Vera Rubin Observatory and the Gaia Survey as exciting developments in the realm of astrophysics, and he is looking forward to adding to this data when we begin receiving images from the James Webb Space Telescope. Primack discusses his work with various simulations that he has utilized to understand what may be occurring within galaxies, and the growing importance of astrobiology in these simulations. He takes us back into his early years in Montana, where his passion for science began to develop, and how his high school education and internships led him to Princeton University for his undergraduate career. While at Princeton, Primack took classes from John Wheeler, worked at the Jet Propulsion Lab under Bill Pickering, and participated in the Students for a Democratic Society, where his interest in the combination of politics and science began to grow. Primack discusses how important the communication between politicians and scientists is, and he saw this need for improved communication early on. He started the Congressional Science and Technology Fellowship program as a preliminary way to work on the relationship between government and science. He then recounts his experiences at Harvard University and his eventual move to Santa Cruz, where he continued working on dark matter and dark energy, among other things. He remarks on his relationship and work with Nancy Abrams, including the courses they taught and the books they wrote together. He ends the interview talking about his family, his recovery from cancer, and the people he’s looking forward to working with in the future.

Interviewed by
David Zierler
Interview dates
January 30, February 6, 13, 20 & 27, 2021
Location
Video conference
Abstract

In this interview Dr. Kenneth Watson, Dr. Richard Garwin, Dr. Curtis Callan, and Dr. Roy Schwitters participate in a roundtable discussion on the origins and early history of the JASON scientific advisory group. Watson, an emeritus from University of California San Diego Scripps Institution of Oceanography, discusses the early efforts of Charles Townes and Marvin Stern in forming JASON. Garwin, IBM Fellow Emeritus at the IBM Thomas J. Watson Research Laboratory of IBM, reflects upon IDA, the management organization that allowed for the formation of the JASON group. Callan, Professor of Physics at Princeton University, discusses the Charney Report and the sponsorship of Ari Patrinos of the Department of Energy, and his relationship with JASON. Schwitters, Regents Professor Emeritus from University of Texas Austin, and Garwin detail JASON’s 1980 report on tunnel detection. The group reflects upon the launch of Sputnik in 1957, and how it added urgency to the creation of JASON. Watson and Garwin discuss the early agenda of JASON and their focus on detection of missile launches, nuclear effects, and Nick Christofilos work with particle beam weapons. They discuss the involvement of JASON in the Vietnam War effort and how some members were targeted by protestors for their involvement. Watson and Schwitters reflect on the presence of Claire Max and the time it took to get more women involved in JASON in face of the traditional “boys club” atmosphere that was present in professional circles at the time. Garwin speaks about the development of the sonic boom report. Callen talks about his study on neutrino detection and the purpose of JASON in a post-Cold War era. He also discusses JASONs work on CHAMMP, Computer Hardware, Advanced Mathematics and Model Physics. The group describes the Human Genome project of the late 1990s. Schwitters and Garwin discuss how JASON can offer independent judgment in ways U.S. Intelligence agencies cannot, such as in 2009 when they were commissioned to study North Korean nuclear capability. Lastly, Watson speaks about how he believes GPS will become an important issue of study for JASON in the future, a point which is furthered by Garwin who also cites cybersecurity in general as a main focal point for JASON moving forward.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Ilko Ilev, discusses his career as a Senior Biomedical Research Service Scientist within the U.S. Health and Human Services Department. He details getting his PhD from the Technical University of Sofia in laser physics, where his thesis was focused on the development of alternative effective laser designs with direct lens-free optical fiber outputs and their implementations towards nonlinear broadband frequency conversions in optical fibers. Ilev details his experience as a Senior Assistant Professor at the Technical University of Sofia where he taught courses on general physics, quantum electronics, and fiber optics. He discusses the relationship between the FDA and medical device manufacturers. He describes the FDA’s longstanding collaboration with the Uniformed Service University of the Health Sciences, which has resulted in the development of a new field, Photobiomodulation Therapeutics. Lastly, Ilev discusses the various ways in which physics is directly applicable to his work.

Interviewed by
David Zierler
Interview dates
July 17 & 19, 2020
Location
Video conference
Abstract

Interview with Sean O’Keefe, Professor at the Syracuse University Maxwell School of Citizenship and Public Affairs. O’Keefe describes moving around as a child when his father worked for the Navy. He discusses his undergraduate work at Loyola in New Orleans, and he explains his interest in pursuing a career in public service in the post-Watergate, post-Vietnam era when there was much cynicism about working for the government. O’Keefe describes his participation in the Presidential Management Intern Program and his work for the Department of the Navy and after that, for the Appropriations Committee on Capitol Hill, where he worked on budgetary policy against the backdrop of the Cold War in the 1980s. He describes his work at Comptroller for the Department of Defense where he worked on identifying budgetary waste at the Pentagon. O’Keefe describes the scene at the Pentagon during the Gulf War, and he discusses the opportunity that led to him becoming Secretary of the Navy. He describes his career prospects outside of government after George H.W. Bush lost re-election and the opportunity leading to his professorship at Syracuse University, where he mentored students in public service leadership. O’Keefe describes being named NASA administrator in the administration of George W. Bush and some of the challenges he encountered coming from a defense background. He discusses the tragedy and his strategy in dealing with the Space Shuttle Columbia disaster, both in terms of lessons learned from the engineering failures, and the grief that he shared with the families of the astronauts who died. O’Keefe describes some of the ways he attempted to turn the disaster into institutional opportunity at NASA and its impact on the Hubble space servicing mission. He describes his decision to become Chancellor at Louisiana State University, where he focused on building up the school’s endowment, dealing with Hurricane Katrina, and working to keep LSU graduates in the state. O’Keefe describes his tenure as CEO of Airbus North America before returning to Syracuse to teach in his current position. At the end of the interview, O’Keefe reflects on what he has learned about organizational leadership over the course of his career, and what he tries to convey to his students as they prepare to become the nation’s next generation of leaders.

Interviewed by
David Zierler
Interview dates
July 28, August 18, September 4 & 11, 2020
Location
Video conference
Abstract

Interview with William H. Press, Leslie Suringer Professor in Computer Science and Integrative Biology at the University of Texas at Austin. Press recounts his childhood in Pasadena and the influence of his father Frank Press, who was a prominent geophysicist, Caltech professor, and who would become science advisor to President Jimmy Carter. He describes the impact of Sputnik on his budding interests in science, and he discusses his undergraduate experience at Harvard, where Dan Kleppner, Norman Ramsey, Ed Purcell and Dick McCray were influential in his development, and where he realized he had an aptitude for applying abstract equations to understanding physical reality. Press describes trying his hand with experimentation in Gerald Holton’s high-pressure physics lab, he recounts his involvement in student activism in the late 1960s, and he discusses his involvement in computer hacking in its earliest form. He explains his decision to attend Caltech for graduate school and his interest in studying with Dick Feynman and Kip Thorne. Press describes the opportunity leading to his work at Lawrence Livermore, how he got involved with Thorne’s group of mathematical general relativists, the origins of Thorne’s work on gravitational waves, and his collaborations with Saul Teukolsky and Paul Schechter. He describes the formative influence of Chandrasekhar. Press discusses his first faculty position at Princeton where he joined John Wheeler’s relativity group, and he describes his research interests flowing more toward astrophysics. He explains the opportunities leading to his tenure at Harvard, where he was given separate appointments in physics and astronomy and where he founded theoretical astrophysics within the Center for Astrophysics. Press describes his entrée into science policy work in Washington with the NSF Physics Advisory Committee and then later on the National Academy of Science and the National Research Council, and he explains the origins of his long-term association with the JASON Study Group. He describes his interest in gravitational collapse, Ia supernovae and galaxy formation, and why the study of black holes reinvigorated the field of general relativity. Press describes the singular genius of Freeman Dyson, and he recounts his contributions to nuclear risk reduction in science policy and his service with the Defense Science Board and the Institute for Defense Analyses. He discusses his tenure as chair in Harvard’s Department of Astronomy, his experience with the Numerical Recipes books, and his collaboration with Adam Riess and Robert Kirshner. Press recounts his decision take a position at Los Alamos as Deputy Director to John Browne, he describes his education there in the concept of leadership which he never received in his academic career, and he provides his perspective on the Wen Ho Lee spy case and the existential crisis this caused at the Lab. He describes the Lab’s role in the early days of computational biology and how this field sparked his interest. Press contextualizes this interest within his conscious decision not to stay connected to astrophysics during his time at Los Alamos, and he explains the opportunity leading to him joining UT-Austin where he remains invested in computational biology. He describes his work for the President’s Council of Advisors in Science and Technology during the Obama administration, he describes Obama’s unique interest in science and science policy, and he narrates the difficulties in the transition to the Trump administration. Press reflects on what it means to be a member of the rarified group of scientists who did not win a Nobel Prize but who were advised by and taught scientists who did. At the end of the interview, Press explains that he has always been a dilettante, which has and will continue to inform how he devotes his time to science, service, and policy matter, and he advises young scientists to aspire to mastery in a specific discipline early in their career before branching out to new pursuits.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Vyacheslav Romanov, Research Physical Scientist at the National Energy Technology Laboratory. Romanov recounts his upbringing in the Urals region of the Soviet Union, and he describes his education at a special high school for gifted students in Moscow. He explains the circumstances that led to his enrollment at the Moscow Institute of Physics and Technology for graduate school and his dawning realization that one can make sense of the world through physics. Romanov discusses his thesis research on the kinetics of light-matter interactions, and he describes his postgraduate work for the Soviet Space Program to develop thin film solar cells to power the International Space Station. He discusses the collapse of science funding after the breakup of the USSR and the opportunity he saw to emigrate to the United States at part of the Symposium on Diplomacy and Global Affairs in Washington, D.C. Romanov explains why he got an MBA from Waynesburg College and how this program put him on the path to U.S. citizenship. After a stint in the materials science industry, he describes his PhD research in physical chemistry and spectroscopy at the University of Pittsburgh, and how this led to his employment at NETL, first as a postdoc and then as a full-time employee. Romanov explains his initial work in geology and data analysis, his subsequent work in optimizing power plant generation, and his current research in reducing the environmental footprint of energy systems with machine learning. He describes the political and economic ramifications of his research, and he explains why carbon-based energy is central to the transition to a de-carbonized future, which, he asserts, will take decades to realize. At the end of the interview, Romanov explains why global efforts to mitigate environmental energy problems must rely on successful cooperation between the U.S. and China. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Ellen D. Williams, Director of the Earth System Science Interdisciplinary Center and Distinguished University Professor at the University of Maryland. Williams recounts her childhood in Michigan, and the benefits that she enjoyed growing up during the height of the U.S. car manufacturing era. She discusses her undergraduate education at Michigan State where she developed an interest in physical chemistry and become involved in women’s rights issues. Williams explains her decision to attend Caltech for graduate school, where she conducted thesis research on the statistical mechanics of surfaces using electron diffraction. She describes the opportunities leading to her appointment in physics and astronomy at Maryland, and she explains the transition from chemistry to a physics department, which was smoothed by the fact that her research focused on phase transitions and critical phenomena. Williams describes achieving tenure and her work within the Institute for Physical Science and Technology. She explains her research in scanning tunneling microscopes and nanotechnologies, and her increasing fluency in working with government funding agencies. Williams explains her decision to join BP as chief scientist where she was involved in fostering BP’s commitment to sustainability, and she describes Ernest Moniz’s offer for her to direct ARPA-E at DOE during the second term of the Obama administration. She conveys her enjoyment working in such a focused manner on clean energy in this role and her contributions to the Paris Climate Accord. Williams describes returning to Maryland and explains the most efficacious way of teaching students about both the science and policy implications of climate change. At the end of the interview, Williams discusses her work as director of the Earth Systems Science Interdisciplinary Center and the ongoing governmental collaborations this position allows, and she offers optimism that we have both the technological and political tools to mitigate climate change effectively.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Peter Lepage, Tisch Family Distinguished University Professor of Physics at Cornell. He recounts his childhood in Montreal and his decision to pursue an undergraduate degree in physics at McGill. Lepage discusses his Master’s work at Cambridge University and his decision to do his thesis research in particle physics at Stanford. He describes the fundamental advances happening at SLAC during his graduate years and his work on bound states of electrons and muons under the direction of Stanley Brodsky. Lepage discusses his postdoctoral appointment at Cornell and his work in high-precision QED calculations in atoms, and he describes the foundational impact of Ken Wilson’s work on lattice QCD and the intellectual revolution of renormalization. He describes this period as his entrée into QCD research, and he emphasizes the beauty of Ithaca and the supportive culture of the Physics Department as his main reasons to accept a faculty position at Cornell. Lepage explains how and when computers became central to Lattice QCD research and why effective field theory was an area of specialization that was broadly useful in other subfields. He describes the ongoing stubbornness of the Standard Model, and he discusses his tenure as chair of the department, then as Dean of the College of Arts and Sciences, and his work on PCAST in the Obama administration. Lepage explains his longstanding interest in physics pedagogy, and he discusses his current work on the numerical integration program called VEGAS. In the last part of the interview, Lepage emphasizes that the most fundamental advances in physics are in astrophysics and cosmology and that lattice QCD should be “kept alive” because it’s unclear where it is going until physics goes beyond the Standard Model.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Peter Lyons, former Assistant Secretary for Nuclear Energy in the Department of Energy. Lyons describes his consulting work as an advisor to National Laboratories, for Jordan’s Atomic Energy Advisory Board, and as a Distinguished Energy Fellow at the Institute of Energy Economics of Japan. He recounts his childhood in Nevada, and he discusses his undergraduate education in physics at the University of Arizona. Lyons discusses the opportunities that led to his graduate research at Caltech where Charlie Barnes and Willy Fowler were formative influences for his work on stellar nucleosynthesis. He describes his postdoctoral appointment at Los Alamos to work on laser fusion and his work in the plasma group. Lyons explains the value of fiber optics for nuclear testing, and he describes his view of SDI when he was a program director at the Lab. He describes his work as Deputy Associate Director for Defense Research and Applications, and how the end of the Cold War was felt at the Lab and in particular for its work in securing the nuclear stockpile of the former Soviet Union. Lyons describes how the Lab adapted to post-Cold War research during his time as Deputy Associate Director for Energy and Environment, and how he became increasingly interested in civilian energy issues. He discusses how the Lab became more involved as a partner to major industrial projects, and he explains his decision to leave the Lab to work for Senator Pete Domenici as science advisor, where he was closely involved in legislation on a number of scientific projects. Lyons describes recent advances in civilian nuclear energy and why hydrogen will be a significant player in the energy future. He discusses his tenure at NRC Commissioner, and his appointment at the Department of Energy with the incoming Obama administration. Lyons explains the impact of the Fukushima disaster on broader discussions relating to civilian nuclear energy, and he explains his decision to retire and the satisfaction he has felt as many of the program he contributed to continue to grow. At the end of the interview, Lyons provides a broad view on where civilian nuclear energy is on the right track as part of a carbon neutral future, and where he sees opportunities for technical and administrative improvement. 

Interviewed by
David Zierler
Interview dates
July 30 and August 3, 2020
Location
Video conference
Abstract

Interview with Sylvester James Gates, Jr., Ford Foundation Professor of Physics and Director of the Theoretical Physics Center at Brown University. Gates discusses his preparations to lead the APS and the value of his service for PCAST for this new role. Gates recounts his family heritage and he discusses his father’s military service and the death of his mother. He explains how his family navigated racist challenges during his upbringing in El Paso and then in Orlando and how he navigated his own intellectual abilities in school. Gates explains his interest in physics in high school and the opportunities that led to his admission at MIT for his undergraduate work. He recounts the many mentors who made a positive impression on him and he explains his realization that his specialty would be at the boundary between math and physics. Gates describes his earliest interactions with string theory and he explains his decision to remain at MIT for his graduate work to work with Jim Young on supersymmetry. He paints a broader picture of supergravity research at this time and the rising importance of computers for this work. Gates describes his postdoctoral research at Harvard as a Junior Fellow, where he worked closely with Warren Siegel, and he describes his decision to join the faculty at MIT after a subsequent postdoctoral position at Caltech. He addresses Shelly Glashow’s criticism of string theory, and he explains his decision to leave MIT for a faculty position at the University of Maryland. Gates reflects on his teaching and mentoring career at Maryland, he describes his time at Howard University, and he discusses the broader issue of diversity in physics and AIP’s TEAM-UP Report. He describes his more recent interests in graph theory and the broader effort to unify gravity with the other forces. Gates reflects on how he became an advisor to President Obama for PCAST and how he worked with John Holdren to translate reports into policy changes. He explains his decision to go emeritus at Maryland and to take a new position at Brown, and why joining the Watson Institute was an attractive part of the offer. Gates reflects on assuming leadership at APS during the twin crises of Covid and racial strife, he surveys the state of string theory and high energy physics, and he explains why supersymmetry might offer a path to understanding dark matter. At the end of the interview, Jim conveys his hope that his work in math will yield deep insights into nature, and he considers the possibility of pursuing an autobiographical project.