Transistors

Interviewed by
David Zierler
Interview dates
June 29, July 5, July 19, July 26, August 2, August 9, August 16, 2020
Location
Video conference
Abstract

Series of seven interview sessions with Carver Mead, Gordon and Betty Moore Professor Emeritus at Caltech. Mead recounts his childhood in California, and he describes the impact of watching his father’s career in the electric power industry. He credits his schoolteachers for encouraging his early interests in math and science, and he explains why attending Caltech as an undergraduate was an easy choice for him because he felt immediately welcomed during his first visit. He describes what it was like to learn quantum mechanics from Linus Pauling, and he explains that his decision to major in electrical engineering stemmed from the fact that applied physics was shunned in the physics department because Murray Gell-Mann referred to it as “squalid state physics.” Mead describes his decision to stay at Caltech for graduate school, and he explains how he became interested in semiconductors and transistors and what would become the origins of “device physics” and how his dissertation research contributed to these developments. He describes his developing understanding that the future of electronics would be in low power, high-performance devices and why he would be best positioned to foster this future as a faculty member at Caltech. Mead describes his collaborations and interest in industry labs including IBM, RCA, and Bell, and he describes his initial and then longtime work with Gordon Moore. He discusses the value of RF transmitters in 1960s-era communications technology and the prospects of satellite telecommunications at the dawn of the space age. Mead describes the origins of VSLI technology, word processors, and microcomputers, and he describes his collaboration with Lynn Conway and the process that went into the classic textbook they coauthored. He describes his research using the human mind as a source of inspiration to push electronics and microprocessors to the next level, and he explains the value of bouncing ideas off of Feynman over lunch. Mead describes the singular potential of his student and collaborator Misha Mahowald, and the value of his work with Arnold Beckman. He discusses the several companies that were spun out of his research in electronics and biophysics, and he describes his work on cameras with Michihiro Yamaki and the learning curve associated with research culture in Japan. Mead offers his perspective on the need to update the debates between Einstein and Bohr in the wake of recent developments in physics, and he explains the intellectual origins of his text Collective Electrodynamics. He explains why scientific debates can take on philosophical or even religious dynamics, and he discusses the origins of G4V and how to think of gravitational attraction as an analogy to electromagnetic interaction. Relatedly, Mead describes his work with Kip Thorne and his involvement with the LIGO endeavor, and he explains why the line between science and engineering is fuzzier than is commonly understood. He explains the significance of the Shapiro Delay, he surmises that the mystery of Dark Energy is sourced in the fact that physics is approaching the problem in the wrong way, and he explains why physics has become hamstrung in its pursuit of mathematizing physical reality ahead of experimental guidance. Mead explains that his views are rooted in his ability to think in pictures, as opposed to abstract symbols, and that the field needs to be more welcoming and inclusive to those who may see math as a barrier to working in physics at a high level. At the end of the interview, Mead describes his interest in current challenges with electric grid infrastructure, he explains why he has championed the work of women in science throughout his career, and he strikes an optimistic note that science always has and will continue, to provide solutions to the world’s most pressing problems.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Eli Yablonovitch, Professor of Electrical Engineering and Computer Sciences at UC Berkeley. He talks about the overlap of these fields with applied physics, and he recounts his family’s Jewish heritage in Europe and his origin as a Displaced Person born to refugee parents after World War II. Yablonovitch describes his childhood in Montreal, his early interests in science, and his undergraduate experience at McGill where he first became interested in transistors. He explains his decision to attend Harvard in Applied Physics for graduate school to and the intellectual influence of Mike Tinkham. Yablonovitch discusses his thesis research on semiconductor optics and four-wave mixing, and he describes the opportunities that led to his postdoctoral work at Bell Labs to work on laser-based communications systems. He discusses his return to Harvard as a faculty member and his subsequent solar research work at Exxon. Yablonovitch discusses his formative collaboration with Sajeev John and his move to UCLA, and he explains how the rise of the internet fostered his entrepreneurial instincts. He describes his work to improve cellphone antennae and his decision to transfer to Berkeley and the origins of Alta Devices. Yablonovitch describe his current interests in circuits and chips and he shares his view on China’s work in basic science. At the end of the interview, Yablonovitch reflects on outliving many tech companies, some of the intractable challenges of solar energy, and why Feynman’s lectures remain a guiding light for his own interests.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Marc Kastner, Donner Professor of Physics at MIT and senior science advisor to the Science Philanthropy Alliance. Kastner explains the nomenclature transition from solid state to condensed matter physics, and he surveys the interplay between theory and experiment in his field.  He recounts his childhood in Ottawa and the influence of his father, who was an experimental physicist, and he explains the opportunities that led to his admission to the University of Chicago. Kastner explains his decision to remain at Chicago for graduate school to work under the direction of Hellmut Fritzsche on optical properties of semiconductors under pressure. He discusses his postdoctoral appointment at Harvard to work with Bill Paul on amorphous silicon, and his connection to David Adler who facilitated his faculty appointment at MIT. Kastner describes his work on amorphous semiconductors and transient excitation and his collaboration with Bob Birgeneau on high Tc. He discusses Joe Imry’s work on heterostructures and subsequent research on the Kondo effect, and how he came to understand the significance of his discovery of the single-electron transistor. Kastner discusses his tenure as department chair, director of MRSEC, and dean of science, and he explains his decision to retire and to join the Science Philanthropy Alliance. He describes his current work with his former student David Goldhaber-Gordon and his excitement over the current research on twistronics. At the end of the interview, Kastner reflects on the role of luck in his career, the centrality of technological advance in his research and what we can learn about physics more broadly as a result of the single-electron transistor.

Interviewed by
Lillian Hoddeson
Interview date
Location
Bell Laboratories
Abstract

Family background and early education; studying chemistry at Occidental College. Work at Bell Labs (1930’s), the job freeze during the 1930’s Depression. Morgan’s work on dielectric constants. Columbia University, Rabi’s course, comparison of academic and industrial scientists. Colloquia and study groups, Darrow, Nix, Shockley. Transfer to Metallurgy Department, work on single crystals of zinc; The Bell Laboratories Record; work under Germer and Davisson, their experiments; work on carbon deposits on filaments using x-ray diffraction, Grisdale, W. E. Campbell. Evolution in role of basic research at Bell Labs; Kelly’s role; Buckley; Bell Labs conference (1954), AIP symposium. Awareness of work on copper oxide rectifiers by Becker, Davisson, Brattain; work on microphone carbon; Holden’s work on quartz; changes in the solid state program. Work during the war years; material research of Scaff and Grisdale; pn junction; technological application. Effects of war on solid state research, interactions with other solid state centers. Postwar years, work in Woolen’s group (1945), work in Wooldridge’s group; reasons for Bardeen’s leaving; Fisk’s group; development of transistor under Shockley.

Interviewed by
Lillian Hoddeson
Interview date
Location
Murray Hill, New Jersey
Abstract

Born in London 1910; Childhood in Palo Alto, California; undergraduate at UCLA, Caltech, graduate school MIT (Slater, thesis advisor); 1936 to Bell Labs; war related work at Whippany (circa 1 year), patents on radar ideas (Columbia U. Project); fission work with Fisk (National Bureau of Standards); the transistor; Solid State Physics group organized 1945 at Bell Labs under Shockley and Stan Morgan.

Interviewed by
Orville Butler
Interview date
Location
Paxton, Massachusetts
Abstract

In this interview, Edward N. Clarke discusses: his family background and education; his time at Brown University and joining the Naval Reserves; his service in the Navy during and immediately following World War II; Vartan Gregorian, former president of Brown; his time at Harvard University with Ed Purcell, Norman Ramsey, and Julian Schwinger; a course he took in millimeter wave technology; Harry Farnsworth; Russ Sherburne; Al Crowell; low-energy electron diffraction work for his thesis; working with vacuum systems and photoelectric effects; his time with Sylvania Electric and work with semiconductors; his work with semiconductors; John Welty; Bell Laboratories and Western Electric; invention of the transistor by John Bardeen, Walter Brattain and William Shockley; learning how to grow single crystals; Bernie Rothlein; joining Sperry Rand and working with Joe Gruber, Bob Hopkins, and Art Seifert; Karl Lark-Horovitz; starting up their company, National Semiconductor; being a part of the Institute of Radio Engineers; working with venture capitalists; Peter Sprague; creating the first mass produced integrated circuit, an integrated chopper the INCH; integrated circuits were first invented by Bob Noyce and Jack Kilby; the field effect transistor; his time at Worcester Polytechnic Institute (WPI); working jointly with the Massachusetts Institute of Technology (MIT); Bill Grogan; solar energy; solar powered car races; and his retirement and volunteer work.

Interviewed by
Paul Henriksen
Interview date
Location
Purdue University, West Lafayette, Indiana
Abstract

Born in Russia 1921, moved to New York 1922; Brooklyn Polytechnic Institute (physics); Purdue University (Ph.D.), 1942- 1949; works teaching military students, 1943-1945; cyclotron and beta ray spectroscopy projects (related to Manhattan Project); Karl Lark-Horovitz as blanket-adviser; semiconductor project with Ron Smith; spreading resistance measurements; Edward Teller, John Bardeen, William Shockley; the self-transistor effect (Bell Laboratories); third electrode work by Seymour Benzer, 1949; semiconductor project; comments on Lark-Horovitz. Also prominently mentioned are: Joseph A. Becker, Walter Houser Brattain, Bill Fan, Arthur Ginsburg, Vivian Annabelle Johnson, Bernard Kurrelmeyer, Robert Green Sachs, Isidor Walerstein, Hubert J. Yearian; American Physical Society, Brooklyn College, Manhattan Project, and United States Army Signal Corps. Interview conducted as part of the International Project in the History of Solid State Physics.

Interviewed by
Lillian Hoddeson
Interview date
Location
Institute for Theoretical Physics, Santa Barbara, California
Abstract

Discusses the collective history of the discovery and development on the transistor. Describes the different interpretations of Shockley, Brattain, and others; discusses the military's lackluster response to transistor discovery. Describes the discovery of PN junction and the importance of early silicon research; discusses his group's search for a semiconductor amplifier. Lists and describes what he believes to be the most crucial experiments during this time of development; discusses the accidental nature of some of their research. Describes the various applications for junction transistors and their development in both the military and consumer sectors.

Interviewed by
Lillian Hoddeson with Gordon Baym
Interview date
Location
University of Illinois
Abstract

Systematically recorded autobiographical highlights from childhood through research at Bell Laboratories in 1947-1948 culminating in the discovery of the transistor. Discovery of transistor discussed in detail in fourth and fifth sessions.

Interviewed by
Lillian Hoddeson
Interview date
Location
University of Illinois
Abstract

Systematically recorded autobiographical highlights from childhood through research at Bell Laboratories in 1947-1948 culminating in the discovery of the transistor. Discovery of transistor discussed in detail in fourth and fifth sessions.