Superconductivity

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Malcolm Roy Beasley, Sidney and Theodore Rosenberg Professor of Applied Physics, Emeritus, at Stanford. Beasley recounts his passion for basketball in high school and the opportunities that led to his undergraduate study at Cornell, where he describes his focus on engineering physics as just the right blend of fundamental and applied research. He describes his relationship with Watt Webb, who would become his graduate advisor, and the origins of BCS theory. Beasley discusses his work taking magnetization measurements on type-II superconductors and his thesis research on flux creep and resistance. He discusses his postdoctoral appointment working with Mike Tinkham at Harvard and the developments leading to reduced dimensional superconductivity. Beasley explains the technological implications in the fluctuations of the order parameter, and he describes the speed with which Harvard made him a faculty offer. He discusses the circumstances that led to him joining the faculty at Stanford, his immediate connection with Ted Geballe, and his work on A15 superconductors. Beasley explains the significance of the 1976 Applied Superconductivity Conference and the important work in the field coming out of the Soviet Union at the time. He conveys the excitement regarding amorphous silicon and how the KT transition in superconductors became feasible. Beasley describes his interest in thermal fluctuation limits and coupled oscillators, and he describes Aharon Kapitulnik’s arrival at Stanford and the origins of the “KGB” group. He describes the group’s work on alloyed-based model systems and his idea to study high-resistance SNS Josephson junctions. Beasley explains “Pasteur’s quadrant” and why the KGB group was so well-attuned to dealing with it, and he discusses the impact of computational theory on the field and specifically that of Josephson junctions on digital electronics. He surmises what quantum superconductivity might look like, and he describes his work as dean and as founding director of GLAM, and some of the inherent challenges in the “trifurcation” at Stanford between the Departments of Physics and Applied Physics and SLAC. Beasley discusses his leadership at APS and the issue of corporate reform, and he explains his role in the Schön commission and what it taught him about scientific integrity. At the end of the interview, Beasley reflects on some of the “forgotten heroes” in the long history of superconductivity, he attempts to articulate his love for physics, and he explains why the achievements of the KGB group represent more than the sum of its parts.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Cherry Murray, Professor of Physics and Deputy Director of Research at Biosphere 2 at the University of Arizona. She describes some of the logistical challenges in managing Biosphere 2 during the pandemic, and she considers how current political and environmental crises perhaps make the research at Biosphere 2 all the more urgently needed. Murray reflects on how her work at the DOE has been an asset for Biosphere 2 and she recounts her early childhood, first in Japan and then Pakistan during her father’s postings for the Foreign Service. She describes her high school education in Virginia and then South Korea and the opportunities that led to her undergraduate admission at MIT, where she became close with Millie Dresselhaus. Murray explains her decision to remain at MIT for graduate work to conduct research in surface physics under the direction of Tom Greytak. She discusses her subsequent work at Bell Labs on negative positron work functions and where she rose to become Vice President, and she provides context for some of the exciting developments in superconductivity. Murray explains the circumstances and impact of the breakup of Bell Labs, and she reflects on her contributions on surface enhanced Raman scattering during her tenure. She discusses her work with Ernest Moniz, the circumstances of her being named Deputy Director for Science and Technology at Livermore Lab, she describes her tenure at Harvard and the development of the Division of Engineering and Applied Sciences, and her experiences as Commissioner of the BP Deepwater Horizon Oil Spill. At the end of the interview, Murray discusses the development of Biosphere 2, some of its early stumbles, and the vast research value it promises for the long term.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Sabyasachi Bhattacharya, Director of The Chatterjee Group - Centers of Research in Education, Science, and Technology, discusses his time working in the United States and India. He discusses his time at Northwestern University as an advisee of John Ketterson and his work with liquid crystals. He also speaks about the interplay between experiment and theory. Bhattacharya details his time as a James Franck Fellow at the University of Chicago and his collaboration with Sid Nagel on the glass transition of glycerol. He speaks about his experience working on charge density waves at Exxon, as well as his discovery of the pseudo-gap phase while there. He discusses working at NEC with vortex phases in type-II superconductors. Bhattacharya reflects on the joy he found teaching physics to undergraduate students. He details his time working at Ashoka University where he was allowed the opportunity to create an undergraduate education framework and build a physics department. Lastly, Bhattacharya discusses the importance of incorporating science into culture.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Steven Kivelson, Prabhu Goel Family Professor of Physics at Stanford University. Kivelson recounts his childhood in Los Angeles as the son of academic scientists, and he describes his transition from career ambitions in the law toward physics. He discusses his undergraduate experience at Harvard, and he describes his lack of appreciation of the stature of many of the physics professors, such as his advisor Paul Martin, whom he knew first as a friend of his parents. Kivelson explains his decision to continue at Harvard for his graduate degree, and he discusses how he developed his interest in amorphous semiconductors under the guidance of Dan Gellat. He recounts his postdoctoral work at UC Santa Barbara, where he worked with Bob Schrieffer on the physics of conducting polymers. Kivelson discusses his first faculty position at Stony Brook, and he discusses the excellent group of graduate students he advised during his tenure there. He discusses some of the broader research questions in condensed matter of the time, including the significance of macroscopic quantum tunneling, invented by Tony Leggett. Kivelson explains his reasons for moving to UCLA, and he discusses Ray Orbach’s efforts to make recruitment a priority there. He discusses his long interest in fractionalization with regard to conducting polymers to be generalized to spin liquids, and his move to Stanford, which attracted him in part because of the condensed matter experimental group. At the end of the interview, Kivelson discusses his current research interests in exploring well-controlled solutions of paradigmatic models of strongly correlated electron systems, and he explains why the concept of a grand unified theory of physics is not a scientific but rather a religious proposition.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Nan Phinney, retired Distinguished Staff Scientist at SLAC. Phinney recounts her childhood in Chicago and her education in Catholic private schools. She describes her undergraduate education at Michigan State where she majored in physics – despite being discouraged by many men that this was not an appropriate field of study for women. Phinney describes the excitement and benefits of focusing on particle physics during such a fundamental era of discovery and she explains her decision to pursue a Ph.D. in physics with Jack Smith at Stony Brook. She discusses her involvement in efforts to discover the Z boson, and she describes her work at CERN. Phinney describes her interest in linear colliders and the circumstances leading to her employment at SLAC. She discusses her initial work on the control system for the SLC and explains how networking issues presented the biggest technical challenge for the project. Phinney describes the international culture of collaboration with projects at CERN and DESY, and she explains the impact of the B factory at SLAC. She discusses her role in the creation of the NLC and the mechanical breakdown leading to the end of the SLC. Phinney describes the origins of the ILC and some of the significant developments in superconductivity in the early 2000s. At the end of the interview, Phinney describes current research on electron-positron colliders, she discusses her work with the APS, and she explains how SLAC has changed both culturally and scientifically over the decades.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Mansour Shayegan, Professor of Electrical Engineering at Princeton. Shayegan recounts his family roots in Isfahan, and the political and social dynamics of growing up in Iran. He explains his decision to pursue an undergraduate education in the United States and the opportunities leading to his enrollment at MIT as an undergraduate. He describes his decision to stay at MIT for graduate school and his experiences in the electrical engineering program, where he worked with his advisor Millie Dresselhaus, during the Iranian Revolution. Shayegan describes Dresselhaus’s reputation as the “Queen of Graphite” and he describes the impact of her research on his dissertation on graphite intercalation. He discusses some of the commercial potential of his graduate research and emphasizes his primary interest in basic research and describes his postdoctoral work at the University of Maryland. He explains the origins of his interest in semiconductor physics in collaboration with Bob Park and Dennis Drew, and he describes the events leading to his faculty appointment at Princeton. Shayegan describes the work involved getting his lab and the MBE system set up, and he discusses the excellent culture of collaboration in both the physics and EE programs at Princeton. He explains recent advances in superconductivity research, and he reflects on the success he has enjoyed as a mentor to graduate students over the years. Shayegan expresses his pleasure in teaching quantum mechanics to undergraduates, and he explains his long-term interest in research on gallium arsenide. At the end of the interview, Shayegan reflects on his contributions to the field, its intellectual origins in the prediction of Bloch ferromagnetism, and the importance of securing the ongoing support from the National Science Foundation.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Robert Cava, Russell Wellman Moore Professor of Chemistry at Princeton. He describes his dual appointment in the Princeton Materials Institute and he reflects on the distinctions between being a solid state and not a condensed matter chemist. Cava recounts his childhood in Brooklyn and the opportunities that led to his undergraduate admission to MIT. He discusses his studies in materials science, and his decision to stay on for a PhD to study crystallography and the properties of sulfide materials under the direction of Bernie Wuensch. Cava describes some of the advances in ceramics that was important to him, and he discusses his work on sodium electrolytes at MIT’s Lincoln Laboratory. He explains his decision to join the Sold State Chemistry Research Department Bell Labs, and he describes some of the exciting developments in ceramic superconductors and why superconductivity is a window onto the complexity of solids. Cava discusses the significance of the YCBO collaboration, he describes the impact of the breakup of Bell Labs and his subsequent decision to transfer to Princeton. He explains some of the cultural shifts that allowed Princeton to become more involved in applied science, and he discusses what he learned about academic politics during his time as chair of the Department of Chemistry. Cava discusses his career-long search for new compounds and studying transition metal oxides, and he describes the many advances in thermoelectronics. At the end of the interview, Cava reflects on his scientific contributions, and he emphasizes the value in science of being a good listener.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Charles Kane, Christopher H. Browne distinguished professor in the Department of Physics and Astronomy at the University of Pennsylvania. Kane surveys the interplay of theory and experiment in condensed matter over the course of his career, and he recounts his childhood in Iowa City, where his father was a professor of civil engineering. He discusses his undergraduate work at the University of Chicago, and the formative influence of Tom Rosenbaum on his interest in theory. Kane describes his graduate research at MIT under the direction of Patrick Lee to focus on mesoscopic physics, and he conveys the excitement surrounding High Tc. He discusses his postdoctoral work at IBM to focus on free-floating theory and he explains the exciting prospect of joining Penn which had a strong condensed matter group. Kane describes Steve Girvin’s role in introducing him to the quantum Hall effect and his key collaboration with Matthew Fischer on calculating electrical conduction when a one-dimensional conductor has a weak link in it. He discusses his subsequent interest in carbon nanotubes and graphene and his realization that graphene should have an energy gap. Kane describes the feeling in winning both the Dirac and Buckley prizes and he discusses advances in the phenomenology of topological insulators. He explains the controversy surrounding Majorana modes and he discusses the recognition by the Breakthrough Prize for his work in topology and symmetry. At the end of the interview, Kane reflects on the growth of his department at Penn and he explains why improved applications of quantum mechanics and improved understanding of quantum mechanics must progress in tandem.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Alice White, Professor and Chair of Mechanical Engineering at Boston University. She recounts her childhood as the daughter of a Bell Labs physicist and her early interests in learning how things work, and she explains her decision to attend Middlebury College. White describes her formative fellowship at Bell Labs and her graduate research in physics at Harvard, where Mike Tinkham supervised her research. She describes being hired by Bob Dynes at MTS in Bell Labs for her postdoctoral research in low temperature physics and she discusses her subsequent work with John Poate on ion implantation. White explains her increasing involvement in optics and the significance of this work during the "dot com" boom and she narrates the reorganization and breakup of Bell. She describes the opportunities that led to her faculty appointment at BU, and she describes working at the interface between mechanical engineering and physics. White describes creating the Multiscale Laser Lithography Lab and her overlapping research interests with biologists, and she reflects on some of the advantages at BU of operating in the shadows of MIT and Harvard. She discusses her tenure as department chair and her research on 3D printing for cardiac repairs. At the end of the interview, White reflects on working at Bell Labs at the height of American power and ingenuity, she emphasizes the importance of encouraging her students to take scientific risks, and she indicates that her future research will be devoted to climate change.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Frances Hellman, professor of physics and of Materials Science and Engineering, Dean of Mathematical and Physical Sciences at UC Berkeley, as well as senior faculty scientist at Berkeley Lab.  Hellman is also president-elect of the APS. Hellman explains why she considers physics her “home” department and why her research agenda spans so many disciplines. She describes the major issues in her incoming leadership of APS and how Berkeley has coped during the pandemic. Hellman recounts her childhood in Manhattan and then Brooklyn and she describes her Quaker education and her early interests in science. She describes her focus on ski racing and her undergraduate experience at Dartmouth, and the formative influence that Bruce Pipes had on her development as a physicist. Hellman discusses her motivations to pursue thesis research at Stanford, where Mac Beasley and Ted Geballe were her co-advisors and where A15 superconductor research was in full gear. She describes her postdoctoral appointment at Bell Labs to work on magnetic thin film materials and magnetic superconductors. Hellman conveys her interest in entrepreneurship and the opportunities that allowed her to join the faculty at UC San Diego, and she describes building up her lab and her interests in thermal links. She reflects broadly on the basic and applied aspects of her research, and she explains her reasons for transferring to Berkeley and her affiliation with the Exploratorium. Hellman describes her administrative responsibilities as department chair in physics and she conveys her recent interests in amorphous materials and specifically ideal glass. At the end of the interview, Hellman discusses her involvement in both the APS and Berkeley’s efforts to make STEM more inclusive and diverse, and she describes her optimism that her work on amorphous materials will lead to key discovery in the field.