Thermodynamics

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Dr. Elliot H. Lieb, professor of physics emeritus and professor of mathematical physics at Princeton University. Lieb opens the interview discussing the primary differences between physical mathematics and mathematical physics, and he outlines how modern mathematical ideas have been used in physics. The interview then looks to the past, to Lieb’s childhood and adolescence in New York City, where his passion for physics began. Lieb discusses his experience as a student at MIT, particularly his political involvement during the McCarthy Era. He also mentions his time working at Yeshiva University, and compares the political sentiment there to that at MIT and other universities around the United States. He talks about the work he was able to do abroad in the United Kingdom, Japan, and Sierra Leone, and about the lessons he learned from each of these experiences. Eventually, Lieb returned to Boston and joined the applied math group at MIT, while also working on the six-vertex ice model. In 1975, Lieb moved to Princeton, where he has collaborated with a number of scientists on a variety of topics and papers, including the 1987 AKLT Model (Affleck, Kennedy, Lieb, and Tasaki). The interview ends with Lieb looking to a future of continued experimentation and collaboration on the subjects that interest him most.

Interviewed by
David Zierler
Interview dates
August 5-7, 10, 11 & 13, 2020
Location
Video conference
Abstract

Interview with Ronald E. Mickens, Distinguished Fuller E. Callaway Professor Emeritus, Department of Physics, at Clark Atlanta University. Mickens recounts his childhood in segregated Virginia and how his entrepreneurial instincts and exposure to farm life fed into his budding interest in science. He explains the opportunities that led to his undergraduate education at Fisk University, where he majored in physics on the basis of his ability to combine his talents in math and chemistry. Mickens describes his formative summer research at Vanderbilt University on thermodynamics, and he explains the influence that his graduate advisor Wendell Holladay played in his life and his decision to continue at Vanderbilt for his graduate work. He discusses his involvement with the Civil Rights movement during his time in Nashville and how he dealt with the possibility of getting drafted for military service in Vietnam. Mickens describes his postdoctoral research in the Center for Theoretical Physics at MIT, and he explains how events that can appear to be supernatural must be explicable within the single physical world. He describes his research at MIT as a time to expand on his thesis work on Regge poles, and he explains how his work with James Young connected him with his research at Los Alamos. Mickens describes his teaching and research record while he was a professor at Fisk, and he discusses his summer research at SLAC and his focus on the Pomeron and elastic scattering. He describes his many research visits to Europe and his work at CERN where he probed the theoretical underpinnings of high energy scattering. Mickens explains his fascination with Newtonian formulation equations and the utility of his visits to the summer Aspen Institute program. He describes some of the frictions he experienced with the administration at Fisk, his work at JILA, and the professional and personal considerations that compelled him to accept a professorship at Clark Atlanta and its transformation from Atlanta University. Mickens conveys the fundamental importance that geometry and numerical modeling has played in his career, and he contextualizes his academic achievements by emphasizing that everyone in his family has achieved a terminal degree. At the end of the interview, Mickens offers a history of the origins of the National Society of Black Physicists, and explains the significance of, and the lessons that should be learned, from Edward Bouchet’s life.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Renata Wentzcovitch, professor of Applied Physics and Applied Mathematics and Earth and Environmental Sciences at Columbia University. Wentzcovitch recounts her childhood in Brazil, and she describes how her grandfather sparked her interest in science early on. She describes her education at the University of São Paulo’s Institute of Physics where she developed an interest in density functional theory. Wentzcovitch discusses her interest in pursuing a graduate degree in the United States, and her decision to attend UC Berkeley and study under the direction of Marvin Cohen. She describes her thesis research on pseudopotential plane-wave codes and super-hard materials such as boron nitride and diamonds. Wentzcovitch explains the impact of High Tc Superconductivity on both her career and the field generally, and she describes her postdoctoral research with joint appointments at Brookhaven and Stony Brook on evolving electronic wavefunctions via classical dynamics. She discusses her subsequent work with Volker Henie at Cambridge to study silicate perovskite, which in turn led to her first faculty appointment at the University of Minnesota. Wentzcovitch describes the importance of Minnesota’s Supercomputing Institute for her research, and she explains how her research focused more centrally on geophysics and the thermo-elasticity of minerals and their aggregates. She describes the founding of the Virtual Laboratory for Earth and Planetary Materials and explains her decision to join the faculty at Columbia and her involvement with VLab and the study of exchange-correlation functionals to address electronic interactions. At the end of the interview, Wentzcovitch discusses her current work on developing codes for thermodynamic computations and seismic tomography, and she conveys the value of pursuing international collaborations to fit her broad and diverse research agenda.

Interviewed by
William Thomas
Interview date
Location
ETH, Zurich, Switzerland
Abstract

In this interview, Kolumban Hutter discusses topics such as: his work at ETH Zurich; his research in glaciology; graduate degrees at Cornell University in theoretical and applied mechanics; Hans Ziegler; Hans Rothlisberger; Peter Kasser; ice plates; Daniel Vischer; John Nye; John Glen; thermodynamics; Andrew Fowler; Leslie Moreland; International Glaciological Society; hydrodynamics; Richard Sebass; fluid mechanics; physical limnology; visiting professorship at University of Arizona in Tucson; Terry Hughes; ice sheets and shelves; teaching at Darmstadt University of Technology; Ernst Becker; Reinhard Calov; Mary Williams; cold-temperate transition surface (CTS); global climate models; and working at Academia Sinica, Taiwan.

Interviewed by
Paul Edwards
Interview date
Location
University of California, Los Angeles
Abstract

In this interview, Akio Arakawa discusses topics such as: University of California, Los Angeles (UCLA); meteorology; his family and education; University of Tokyo; Japan Meteorological Agency; Hidetoshi Arakawa; fluid dynamics and thermodynamics; Michael Schlesinger; weather prediction; FORTRAN; UNIVAC; Yale Mintz; Chuck Leith; Mark Rhodes; Joseph Smagorinsky; Jule Charney; John Von Neumann; Syukuro Manabe; Geophysical Fluid Dynamics Laboratory (GFDL); International Business Machines Corporation (IBM); Pierre Morel; David Randall; climate models; National Aeronautics and Space Administration (NASA); Milton Halem; Jim Hansen; United States Department of Transportation (DOT); Rand Corporation; Max Suarez; National Center for Atmospheric Research (NCAR); National Science Foundation (NSF); Thomas Rosmond; National Academy of Sciences; carbon dioxide.

Interviewed by
Paul Edwards
Interview date
Location
University of California, Los Angeles
Abstract

In this interview, Akio Arakawa discusses topics such as: University of California, Los Angeles (UCLA); meteorology; his family and education; University of Tokyo; Japan Meteorological Agency; Hidetoshi Arakawa; fluid dynamics and thermodynamics; Michael Schlesinger; weather prediction; FORTRAN; UNIVAC; Yale Mintz; Chuck Leith; Mark Rhodes; Joseph Smagorinsky; Jule Charney; John Von Neumann; Syukuro Manabe; Geophysical Fluid Dynamics Laboratory (GFDL); International Business Machines Corporation (IBM); Pierre Morel; David Randall; climate models; National Aeronautics and Space Administration (NASA); Milton Halem; Jim Hansen; United States Department of Transportation (DOT); Rand Corporation; Max Suarez; National Center for Atmospheric Research (NCAR); National Science Foundation (NSF); Thomas Rosmond; National Academy of Sciences; carbon dioxide.