Fermi National Accelerator Laboratory

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Murdock Gilchriese, Senior Physicist at Lawrence Berkeley National Lab. He discusses his contribution to the major project, LUX-ZEPLIN (LZ) and the broader search for dark matter, he recounts his parents’ missionary work, and his upbringing in Los Angeles and then in Tucson. Gilchriese describes his early interests in science and his undergraduate experience at the University of Arizona, where he developed is expertise in experimental high energy physics. He discusses his graduate work at SLAC where he worked with Group B headed by David Leith, and he describes his research in hadron spectroscopy. Gilchriese explains his postdoctoral appointment at the University of Pennsylvania sited at Fermilab to do neutrino physics before he accepted his first faculty position at Cornell to help create an e+/e- collider and the CLEO experiment. He discusses the inherent risk of leaving Cornell to work for the SSC project with the central design group, and then as head of the Research Division. Gilchriese describes his subsequent work on the solenoidal detector and his transfer to Berkeley Lab to succeed George Trilling and to join the ATLAS collaboration. He explains the migration of talent and ideas from the SSC to CERN and discusses the research overlap of ATLAS and CMS and how this accelerated the discovery of the Higgs. Gilchriese describes his next interest in getting into cosmology and searching for dark matter as a deep underground science endeavor, and he explains why advances in the field have been so difficult to achieve. At the end of the interview, Gilchriese describes his current work on CMB-S4, his advisory work helping LBNL navigate the pandemic, and he reflects on the key advances in hardware that have pushed experimental physics forward during his career.

Interviewed by
David Zierler
Interview dates
July 27 & August 2, 2020
Location
Video conference
Abstract

In this interview, Peter McIntyre, Mitchell-Heep professor of experimental physics at Texas A&M University, and president of Accelerator Technology Corporation discusses his career and achievements as a professor. McIntyre recounts his childhood in Florida, and he explains his decision to pursue physics as an undergraduate at the University of Chicago and the influence of his longtime hero Enrico Fermi. He discusses his interests in experimental physics and he explains his decision to stay at Chicago for graduate school, where he worked with Val Teledgi, during a time he describes as the last days of bubble chamber physics. McIntyre conveys his intense opposition to the Vietnam War and the extreme lengths he took to avoid being drafted, and his dissertation work on the Ramsey resonance in zero field. He describes Telegdi’s encouragement for him to pursue postdoctoral research at CERN where he worked with Carlo Rubbia on the Intersecting Storage Rings project. He describes his time as an assistant professor at Harvard and his work at Fermilab, and the significance of his research which disproved Liouville’s theorem. McIntyre describes the series of events leading to his tenure at Texas A&M, and he explains how his hire fit into a larger plan to expand improve the physics program there. He discusses the completion of the Tevatron at Fermilab and the early hopes for the discovery of the mass scale of the Higgs boson, and he describes the origins of the SSC project in Texas and the mutually exclusive possibility that Congress would fund the International Space Station instead. McIntyre describes the key budgetary shortfalls that essentially doomed the SSC from the start, his efforts in Washington to keep the project viable, and the technical shortcomings stemming from miscommunication and stove-piping of expertise. He describes his involvement in the discovery of the top quark and the fundamental importance of the CDF, DZero, and ATLAS collaborations. McIntyre discusses his achievements as a teacher to undergraduates and a mentor to graduate students, and he assesses the current and future prospects for ongoing discovery in high energy physics. At the end of the interview, McIntyre describes his current wide-ranging research interests, including his efforts to improve the entire diagnostic infrastructure in screening and early detection of breast cancer.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler interviews Deborah Harris, professor of physics at York University and Senior Scientist at Fermi National Accelerator Laboratory. Harris discusses her work as co-spokesperson for MINERvA, and she recounts her childhood and her father’s work as a physicist at Fermilab. She describes her undergraduate work at Cornell before she transferred to Berkeley. Harris discusses her graduate work at Chicago, where she contributed to the E799 experiment, and her thesis research on Kaon decay modes. She describes her postdoctoral research at the University of Rochester in neutrino physics, and her full time transition as a staff scientist at Fermilab to focus on neutrino oscillations. Harris discusses her subsequent work on MINERvA and MINOS and how the neutrino community has grown over the past fifteen years. She describes her contributions to the DUNE collaboration and its goal of taking neutrino measurements over a broad range of energy. At the end of the interview, Harris explains her decision to take a faculty appointment at York, and how neutrino research contributes to broader questions in physics.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Paul Emma, retired and formerly Senior Staff Scientist at SLAC. Emma recounts his childhood in Illinois, and he describes his undergraduate work at Western Washington University in Bellingham. He explains why he left WWU early to accept an opportunity for graduate work at Caltech briefly before accepting a job at Fermilab where he worked in operations on the Main Ring and the Tevatron project. He describes the series of events leading to his work at SLAC, where he worked in operations and design on the LCLS, the SLC, and the NLC. Emma describes his work for the superconducting undulator for Argonne and Lawrence Berkeley Laboratories, and at the end of the interview he discusses his ongoing work on LCLS-II.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with William Herrmannsfeldt, Staff Physicist at SLAC. Herrmannsfeldt recounts his German heritage, his upbringing in Ohio, and his early interests in physics which he pursued as an undergraduate at Miami University. He discusses his graduate work on beta decay and nuclear physics at the University of Illinois, under the direction of James Allen, and he describes his postdoctoral appointment at Los Alamos where he made detectors for bomb tests. Herrmannsfeldt explains the connection between his work at Los Alamos on electron optics and his initial research at SLAC, and he describes his work on linear accelerators. He describes his tenure as Secretary of the Advanced Development Group and his role at the AEC to concentrate on accelerator physics for Fermilab. Herrmannsfeldt explains the decision to move ahead with the PEP project and his LINAC work at Berkeley. Herrmannsfeldt explains the relevance of this research to nuclear fusion, and he describes some of the technical challenges in building the superconducting RF system. At the end of the interview, Herrmannsfeldt conveys the sense of fun he felt in learning new technological systems, the inherent challenges of beam dynamics, and he reflects on how SLAC has changed since its inception. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Ruth Van de Water, Scientist I at Fermilab. She explains the hierarchical system at the lab to explain her title and she recounts her childhood in Northern Virginia. Van de Water describes her undergraduate experience at William & Mary where she developed an interest in physics and was mentored by David Armstrong, and she describes the considerations that led to her admission to the graduate program at the University of Washington. She discusses her early involvement in the Atlas program and her thesis research that focused on computational and numerical physics and lattice QCD. Van de Water discusses her postdoctoral work at Fermilab, and she describes the state of play regarding the Tevatron and the D0 and CDF collaborations. She describes her ongoing work in lattice QCD research and the opportunity that led to her second postdoctoral position at Brookhaven, where she pursued a new approach to discretizing quarks. Van de Water describes Fermilab “poaching” her back to work on quark flavor physics and become involved in the G-2 experiment. She discusses the negative impact on a decreased budget, and her current leave from Fermilab to be a visiting professor at North Central College, and she shares that she is conflicted about continuing on a strictly research path and focusing more directly on teaching. At the end of the interview, Van de Water discusses the impact of #ShutdownSTEM and the issue of inclusivity in physics and why solutions to under-representation are not easily achievable. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Marcelle Soares-Santos, assistant professor of physics at the University of Michigan. Soares-Santos recounts her childhood in Brazil, her early interests in science, and her graduate work in physics at the University of São Paulo. She describes her graduate visit to Fermilab to study galaxy clusters as a way to map the history of the expanding universe, which formed the basis of her thesis research. Soares-Santos discusses her return to Fermilab as a postdoctoral researcher, where she joined the Dark Energy Survey, and she explains how DES is getting us closer to understanding what dark energy is. She describes Fermilab’s broad-scale transition into astrophysics, and she explains the opportunities that led to her faculty appointment first at Brandeis before moving to Michigan. Soares-Santos discusses her current work in gravitational waves, and she prognosticates on what the discovery of dark energy (or energies) will look like. She shares her perspective on recent efforts to improve diversity and inclusivity in STEM. At the end of the interview, Soares-Santos explains why observation is leading theory in the current work of astrophysics and cosmology and why she is optimistic for fundamental advances in the field.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Sarah Demers, Horace D. Taft Associate Professor of Physics at Yale University. Demers explains her academic lineage connection to Taft, and she surveys the challenges of remote work in the pandemic. She recounts her Vermont childhood growing up in the church as the daughter of a United Methodist minister and how her family discussed the compatibility of science and religion. Demers discusses her undergraduate experience at Harvard and her early struggles with physics. She describes her relationship with Melissa Franklin and her first experiences with the CDF detector project at Fermilab. Demers explains her decision to go to the University of Rochester for graduate school where she studied under the direction of Kevin McFarland, and she describes plotting the Z boson at Fermilab. She describes her first job teaching at Roberts Wesleyan College and her subsequent appointment as part of SLAC’s team for ATLAS at CERN, where she developed an infinity for the triggers of experiments. Demers explains the opportunities that led to her faculty appointment at Yale, and she describes the interests that led to her book on physics and dance. She discusses her ongoing collaboration with ATLAS, the tenure process at Yale, and her work on Mu2e. Demers describes the “aesthetic hints” that may prove to be physics beyond the Standard Model, and she explains why the LHC can play a pivotal role in the search for dark matter. At the end of the interview, Demers discusses her current interest in tau leptons, she describes the issue of bias as a blockage to improving diversity in the field, and she reflects on the technological improvements that have propelled her field forward. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Joshua Frieman, head of the Particle Physics Division at Fermilab, and professor of astronomy and astrophysics at the Kavli Institute for Cosmological Physics at the University of Chicago. He recounts his childhood in Princeton as the son of a physicist and his decision to attend Stanford as an undergraduate, where his interests in cosmology developed. Frieman explains that his options for graduate research in cosmology were narrow and his reasons for going to the University of Washington to work with Jim Bardeen before moving to Chicago to be Michael Turner’s first graduate student. He discusses his interest in approaching cosmology from the perspective of particle theory and his thesis focus on curved space time within a cosmological context. Frieman describes his postdoctoral work at SLAC and his first position at Fermilab in the theory group that Dave Schramm had started. He discusses his work on the Sloan Digital Sky Survey and then the Dark Energy Survey. Frieman explains what might be needed to understand dark energy, he describes his appointment at Chicago, and he explains the origins of the Magellan Telescopes project. He discusses the value of the Aspen summer sessions and his involvement with P5, and explains the value of the 2010 Decadal Survey. At the end of the interview, Frieman surveys the current slate of project at Fermilab and emphasizes the value of incorporating cosmological perspectives to high-energy and particle physics. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Marjorie Shapiro, Professor of Physics at UC Berkeley and Faculty Senior Scientist at Lawrence Berkeley National Laboratory. Shapiro describes the value of this dual affiliation and she surveys the current state of play at the LHC and its work on dark matter research, and what physics beyond the Standard Model might look like. She recounts her upbringing in Brooklyn and her father’s work as a medical physicist, and she explains the opportunities that led to her undergraduate admission at Harvard. Shapiro describes her immediate attraction to experimental particle physics and some of the challenges she faced as a woman. She explains her decision to go to Berkeley for graduate school, where the Lab was a specific draw and where she worked under the direction of Dave Nygren, whose group was working on the Time Projection Chamber. Shapiro describes her postdoctoral appointment back at Harvard to work on the CDF collaboration with Roy Schwitters, who was CDF spokesman at the time. She explains the exciting discoveries at Fermilab, her involvement in B physics, and the friendly competition with DZero. Shapiro explains that her first faculty appointment at Harvard was never something that she assumed would be long term, and the circumstances leading to her appointment at Berkeley. She explains Berkeley’s pivot to CERN following the cancellation of the SSC and the trajectory of the ATLAS program to study electroweak symmetry breaking, and she discusses her advisory work on HEPAP. Shapiro narrates the buildup and elation surrounding the discovery of the Higgs and she describes her accomplishments as the first woman to chair the Department of Physics at Berkeley. She discusses her post-Higgs concentration on SUSY and she explains that in addition to pursuing physics beyond the Standard Model and why the LHC data suggests that there remains much to be learned within the Standard Model. At the end of the interview, Shapiro explains why there remains fundamental unanswered questions on CP violation, and she explains why young physicists should pursue their research in the broadest possible way.