Biophysics

Interviewed by
Jon Phillips
Interview date
Location
Baltimore, Maryland
Abstract

In this interview, Jon Phillips, oral historian at AIP, interviews David Rose, Professor Emeritus of Biology at the University of Waterloo. In this interview, Dr. Rose discusses his education in physics and biology as an undergrad at Penn. He then discusses his graduate studies under David Phillips at Oxford University, and his introduction to crystallography while there. He describes his post-doctoral work with Gregory Petsko at MIT, and the growth of crystallography in the US at that time. He recounts his transition to the Canadian National Research Council in Ottowa, where he worked on protein crystallography and glycobiology. He goes on to discuss his move to the University of Toronto’s Princess Margaret Hospital, where he spent the majority of his career. Finally, Rose discusses his time at the University of Waterloo, teaching and research during the COVID-19 pandemic, and his tenure as President of the American Crystallographic Association.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Naomi Ginsberg, Associate Professor of chemistry and physics at University of California, Berkeley and faculty scientist at Lawrence Berkeley Lab. The interview begins with Ginsberg discussing her multidisciplinary background in science and how she prefers not to draw boundaries between research fields. She talks about how the Covid-19 pandemic has affected her research and the science community in general. Then Ginsberg turns to her childhood in Canada and recalls being a curious child with many interests. She describes her undergraduate studies in engineering at the University of Toronto and her summers of research at the Institute for Biodiagnostics, which is where she became seriously interested in physics. Ginsberg discusses pursuing a PhD at Harvard University under Lene Hau, where she worked on ultraslow light in Bose-Einstein condensates and superfluid dynamics. She then talks about wanting to switch gears toward biophysics and choosing to go to LBL for a post-doc in photosynthesis work. Ginsberg describes accepting her current position at Berkeley and the different cultures between the chemistry and physics departments. Towards the end of the interview, she touches on her DARPA grant for research on organic semiconductors, as well as the advances in technology that have informed and shaped her research over the years. Ginsberg looks back on the many grad students she has mentored and points to open-mindedness and confidence as key characteristics for their success.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with John Spence, Richard Snell Professor of Physics at Arizona State University. Spence discusses his dual role as a Director of Science at NSF and his focus on research at the intersection of biology and physics. He recounts his childhood in Australia and his undergraduate education at Queensland University. Spence describes his graduate research on plasmons at Melbourne and the opportunities that led to his postdoctoral appointment at Oxford, where he worked with Mike Whelan and David Cockayne on quantifying atom arrangements in solids. He describes his decision to join the faculty at Arizona State, and the nascent field of high-resolution electron microscopy, which compelled him to write a book on the topic. Spence discusses his work on the structure of defects in superconductors and his collaborations with Bell Labs, and he explains the significance of the LCLS to his research. He describes the BioXFEL project, his work as part of the broader community of crystallographers, and the intellectual origins of the book "Lightspeed". At the end of the interview, Spence credits Michael Crow for bringing ASU to the forefront of so much innovation in science, and he reflects on how physics has never failed to surprise him.

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Dr. Joel Myklebust, former deputy director of the Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, at the FDA. Myklebust recounts his childhood in Iowa and his libertarian politics as a college student in Chicago. He describes his graduate work at the Medical College of Wisconsin-Milwaukee where he conducted research on neuroscience from a physics perspective. Myklebust explains his work in biomedical engineering at Marquette where he studied neurological issues relating to aging. Myklebust describes the circumstances leading to his tenure at the National Institute on Disability and Rehabilitation Research, where he worked on rehabilitation engineering, and he describes his work in CDRH over the past twenty years. He provides a broad overview of the development of biomedical physics at the FDA, and he discusses the various technological and regulatory issues surrounding the Agency’s mission to ensure device efficacy and safety.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Steven Block, W. Ascherman Professor of Sciences, Stanford University. Block describes his German-Jewish heritage on his mother’s side, and his father’s Eastern European Jewish heritage. He describes growing up the son of a physicist and the importance of skiing and music in his family and spending his early childhood in Italy while his father was a visiting scholar. Block describes the rest of his childhood in North Carolina, and then Illinois, where his father worked for Duke and Northwestern, respectively. He explains his unique interests in Chinese and oceanography and why this led him to the University of Washington in Seattle, and he describes his subsequent pursuit of physics and ultimately biophysics at Oxford University. Block discusses the formative relationship he built with Max Delbruck at Cold Spring Harbor Labs where he worked on phycomyces, and he explains his decision to go to Caltech for graduate school to work with Howard Berg. He describes his postgraduate interests in sensory transduction in e. coli as a postdoctoral researcher at Stanford, and he provides a history on the discovery of kinesin and why this was key for his research. Block explains his decision to join the Rowland Institute and he discusses its unique history and the freedom it allowed its researchers, and he describes the opportunity that allowed him to secure tenure at Princeton. He describes some of the difficulties in convincing his colleagues to consider biophysics as “real” physics and the considerations that led to him joining the faculty at Stanford. Block describes the difficulties he has experienced when his laboratory site was displaced, and how, in dark way, he was prepared for the pandemic lockdown before most of his colleagues. At the end of the interview, Block reflects on his contributions, he explains the central importance of statistical mechanics to biophysics, he explains how he has tried to emulate his mentors in the care and interest he has shown his own students, and he prognosticates on the future of single molecule biophysics.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Zane Arp, director for Biomedical Physics at the FDA. Arp provides an organizational overview of where his office sits within the FDA and its key institutional partners throughout and beyond the federal government. He recounts his childhood in Texas and his undergraduate experience at Angelo State where he majored in chemistry. Arp explains his decision to pursue a PhD in physical chemistry at Texas A&M with a focus on quantum chemistry through spectroscopy, and he describes his postgraduate work at Los Alamos on laser-induced breakdown spectroscopy. He discusses his subsequent work at Wye Laboratories and Johnson Space Controls in support of the International Space Station. Arp describes his next job at GlaxoSmithKline to work on pharmaceutical development and where he grew into management leadership roles. He describes the opportunities that led to him joining the FDA and he describes his game plan for improving the biomedical device research and regulatory process. Arp explains why this is a long-term proposition and he describes how COVID has, and has not changed FDA’s regulatory environment. At the end of the interview, he reflects on what shifts he been able to put in place so far at the FDA and why his office truly benefits from having a mission statement.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

This is an interview with Peter Basser, Principal Investigator at NIH and Section Chief of the Laboratory on Quantitative Imaging and Tissue Sciences with the National Institute of Child Health and Human Development. Basser recounts his childhood in Long Island as the child of Austrian-Jewish immigrants. He describes his undergraduate education at Harvard and how he became interested in biology from a physics perspective. He describes his decision to stay on for graduate research where he worked on fluid dynamics in the lab of Tom McMahon. Basser discusses his postgraduate work on medical devices at Hewlett-Packard, and he describes the opportunities that led to his work at the NIH. He describes the research over the course of his tenure in magnetic stimulation and the flow of currents through nerve membranes. Basser discusses his move to NICHHD and the new opportunities becoming a Principal Investigator offered. He explains his long-range work on tensor imaging and anisotropic diffusion in brain tissue and the growing capacity to image tissue in stroke patients. Basser discusses his work in biomimetics and he explains his dual motivations in furthering both basic science and translational research that has clinical value. He explains the unique collaborative opportunities the NIH affords to work with medical doctors. At the end of the interview, Basser emphasizes the importance of continuum mechanics as a scientific concept that informs all aspects of his work, and he explains why he is excited in the future about new opportunities to study subcellular objects with NMR and other techniques.  

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

This is an interview with David Weitz, professor of physics and applied physics at Harvard. Weitz recounts his childhood in Ottowa, his decision to pursue an undergraduate education in Waterloo, and a formative summer experience at the Weizmann Institute which convinced him to become a scientist. He describes his graduate work at Harvard, where he worked in Mike Tinkham’s group and where he developed his thesis research on the Josephson effect. He discusses his postgraduate work at the laboratory at Exxon where he developed research on de Gennes soft matter physics. Weitz explains his decision to join the faculty at Penn at a time when the basic science culture at Exxon was coming to a close, and Harvard’s successful effort to recruit him shortly thereafter. He discusses his work as director of the Harvard Materials Research, Science and Engineering Center, how he became interested in biophysics and biomedical engineering and how he pursued entrepreneurial and culinary interests from a soft matter perspective. At the end of the interview, Weitz describes his current motivations in using soft matter physics to advance human health and improve fracking as a key part of the American energy system.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Wayne Hendrickson, Violin Family Professor of Physiology and Cellular Biophysics at Columbia University. Hendrickson recounts his childhood on a dairy farm in Wisconsin and explains how this environment fostered his interest in the natural world. He describes his undergraduate experience at the University of Wisconsin at River Falls, and his formative work at Argonne Lab where he studied Caesium-137 levels in beagle dogs. Hendrickson describes his intent to focus on biophysics in graduate school and his decision to accept at offer at Johns Hopkins, where he became interested in protein crystallography and electron microscopy. He discusses his dissertation research under the direction of Warner Love and the importance of the research conducted at Woods Hole which influences his work on studying hemoglobin in lampreys. Hendrickson describes the importance of computational biology and the promises this offered protein crystallography, and he explains the influence of Linus Pauling in advancing the field. He explains why he stayed on at Hopkins after his defense because he felt there was more work for him to complete on the Patterson function. Hendrickson discusses his work at the Naval Research Laboratory on parvalbumin molecules and his developing interests in anomalous scattering techniques. He discusses how the field matured and had gained broader acceptance, and he surmises how these trends led to recruitment efforts that led to his tenure at Columbia in the 1980s. Hendrickson explains the labyrinthine nature of his many appointments and affiliations at Columbia, and the opportunities he has had to teach and to mentor graduate students within an environment that is primarily research-focused. He discusses the improvement of technology over the course of his time at Columbia, and he discusses his work on beamlines at Howard Hughes and Brookhaven. Hendrickson describes his work as scientific director of the New York Structural Biology Center, and he explains how his research has moved closer toward clinical motivations in recent years. At the end of the interview, Hendrickson reflects on his long career in biophysics, and he draws on the story of HIV infectivity as an example of how the field can progress from a place of really not understanding basic biological problems, to developing effective therapies.

 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Philip Anfinrud, Senior Biomedical Research Scientist, National Institute for Diabetes and Digestive and Kidney Diseases, at the National Institutes of Health. Anfinrud likens his work environment to the “Bell Labs of Biophysics” and he expresses his pride in working with colleagues conducting research at the cutting-edge of their respective fields. He recounts his upbringing in small town North Dakota and how he developed his early interests in atmospheric chemistry. Anfinrud describes the circumstances leading to his graduate work at Berkeley, and how he approached his interests in physics from a physical chemistry perspective. He describes his work with Walter Struve on energy transport and picosecond lasers, and he describes his postdoctoral research with Robin Hochstrasser at the University of Pennsylvania where he worked on infrared spectroscopy on the femtosecond time scale. Anfinrud discusses his first faculty appointment at Harvard, and he describes the process building a laser lab in partnership with Mitsubishi. Anfinrud explains his research on myoglobin and photolysis laser pulses, and he describes his first forays in X-ray radiation and crystallography. He describes his move to the NIH, where he created Laboratory of Ultrafast Biophysical Chemistry. Anfinrud explains the value of NMR spectroscopy to understand protein folding, and he describes how his interests are situated more in the realm of basic science and not clinically-oriented research. He discusses the value of scaling laws in physics as a means for understanding biochemical phenomena, and he describes the numerous ways that the NIH provides an ideal environment for research. At the end of the interview, Anfinrud provides an overview of his current research in time-resolved crystallography and single molecule behavior, and he describes the public health impact of his work on speech droplets as a means of transmitting the coronavirus.