Biophysics

Interviewed by
David Zierler
Interview date
Location
Remote Interview
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Bernard Brooks, Chief of the Computational Biophysics Section in the National Heart, Lung and Blood Institute of the National Institutes of Health. Brooks describes the long scientific tradition in his family and he recounts his childhood in Massachusetts, where he displayed aptitude for the sciences at an early age. He describes his undergraduate education at MIT where he focused on chemistry from a computational perspective. Brooks discusses his graduate work at Berkeley where he worked with Fritz Schaefer on the configuration interaction code in quantum chemistry. He describes his postdoctoral research at Harvard with Martin Karplus, where he helped to develop the CHARMM project to study protein simulations. Brooks describes the circumstances leading to his work at the NIH, and he describes his ongoing work on CHARMM over the years. He explains the development of computational biophysics over the past thirty years and the numerous ways this work is relevant across the institutes at the NIH. At the end of the interview, Brooks assesses the impact of the rise of computation power over the course of his career and he forecasts how his work will contribute to ongoing improvements in physics models.

Interviewed by
David Zierler
Interview dates
June 12, 16, 2020
Location
Remote Interview
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews William Eaton, NIH Distinguished Investigator and Chief of the Laboratory of Chemical Physics. Eaton recounts his childhood in Philadelphia and he describes his undergraduate and graduate work at the University of Pennsylvania, where he earned an M.D. a Ph.D. He describes his budding interests in chemical physics during his time in medical school and his formative research at Cambridge, where he worked on protein synthesis. He conveys the serendipity surrounding his decision to join the NIH as a result of his experience with the draft during the Vietnam War. He discusses his offer to head the biophysics program at Harvard, and he explains his decision to remain at NIH. Eaton provides a history of NMR and AIDS research at the NIH, and he describes his research agenda at the NIH, including his seminal work on sickle cell disease and protein folding. At the end of the interview, Eaton reflects on the value of his medical degree over the course of his career.

Interviewed by
David Zierler
Interview date
Location
video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Richard Leapman, Senior Investigator in the National Institute for Biomedical Imaging and Bioengineering and Scientific Director of the intramural program. Leapman recounts his childhood in England and he describes his early and formative experience playing with an optical microscope. He describes his undergraduate work at Peterhouse College of Cambridge University and the influence of Aaron Klug in his physics education. Leapman explains his decision to remain at Cambridge for his Ph.D., and he describes his work in the Cavendish Laboratory and Klug's suggestion that he focus on inelastic scattering of electrons in electron microscopes to perform elemental microanalysis. He discusses his postdoctoral work at Oxford and the opportunity leading to his research at Cornell in the School of Applied Engineering Physics. Leapman explains his attraction to join the NIH upon learning that he would have access to an electron microscope and could work on electron energy-loss spectroscopy. He describes some of the biological implications of this work, including the ability to look at cells to detect elemental distributions inside subcellular organelles. Leapman discusses his many collaborations across the Institutes at the NIH and the development of NMR spectroscopy, and he describes the partnership between NIH and NIST that ensured his access to cutting-edge technology over the course of his career. He describes various aspects of his research that have direct clinical value to treating a variety of ailments, including asbestos exposure to coronavirus. Leapman describes his work at the chief of electron beam imaging and micro-spectroscopy and the numerous collaborations he has pursued beyond the NIH at both National Labs and university labs. He discusses some recent advances in his field, including new abilities to determine the 3D structure of proteins, and he explains his administrative duties as Scientific Director of the Institute. At the end of the interview, Leapman describes how the study of electrons has connected all of his research, and he discusses some of the challenges and opportunities he has confronted in his career as a physicist operating in a biologically-focused research environment.

Interviewed by
David Zierler
Interview date
Location
Essex, Maryland
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews L. Mario Amzel, Director of the Department of Biophysics and Biophysical Chemistry at Johns Hopkins. Amzel recounts his childhood in Argentina and discusses his developing interests in physics and thermodynamics as an undergraduate. He describes his graduate work in crystallography and liquid crystal displays under the direction of Leo Becka. Amzel describes the tumultuous political situation in Argentina and the impact these events had on his academic career, including his decision in 1967 to leave the country and continue his studies in Venezuela. He describes the circumstances leading to his decision to come to John Hopkins in 1969. Amzel describes the range of research projects he has worked on over the past fifty years, including his work on immunoglobulin and monoclonal antibodies, mitochondrial ATPase, leukotriene synthesis, and voltage-gated sodium channels. He explains the relevance of his work on various clinical and pharmacological therapies. Amzel emphasizes the importance and relevance of physics first principles in all of his work, and in particular statistical thermodynamics. He reflects on how his work sits at the nexus of physics, chemistry, and biology. At the end of the interview, Amzel describes the evolution of biophysics over the course of his career. 

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews David J. Haas, President of the Tecco Corporation. Haas discusses his work as founder of Tempbadge and he recounts his childhood in Buffalo and then Texas. He describes his undergraduate education at the University of Buffalo, where biophysics was beginning to start as a distinct discipline. Haas explains his decision to remain at Buffalo for his graduate research, working under Fred Snell, and he describes his introduction to crystallography from David Harker at the Roswell Park Memorial Institute. He emphasizes the critical support provided by the National Institutes of Health (NIH), both to him as a graduate student and to biophysics generally at the time. Haas discusses his postdoctoral research in cryo-crystallography with David Phillips at the Royal Institute in London, and his brief work beforehand at the Naval Research Lab in Washington, DC. He describes his subsequent work at the Weizmann Institute in Israel where he continued his research in cryo-crystallography, and he describes the scene there during the Six Day War. Haas discusses his work at the Philips Corporation in New York, where he became involved with the X-ray research that would go into security scanners at airports and stadium venues. He explains his decision to go into business for himself with the launch of Temtec for which he created self-expiring visitor badges. At the end of the interview, Haas provides an overview for some of the major advances in biophysics over the course of his career, and he expresses optimism regarding the viability of antiviral therapies for Covid-19 by the end of the year.

Interviewed by
David Zierler
Interview date
Location
video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Ksenia Blinova, acting assistant division director, Office of Science and Engineering Laboratories, Division of Biomedical Physics at the FDA. Blinova recounts her childhood in Tula, Soviet Union, and she describes the “physics” and “lyrics” educational scheme that splits school children into either a science or humanities focus. She describes her education at Moscow State University, where she became interested in physics and where Victor Yuzhakov and Svetlana Patsaeva were her graduate thesis mentors and where she developed her expertise in fluorescence intensity. Blinova discusses her postdoctoral work at the NIH where she was mentored by Robert Balaban in the Cardiac Energetics Laboratory. She describes the fellowship opportunities stemming from NIH-FDA collaborations that led to her initial work at the FDA, where she learned both biostatistics and took training in regulatory issues. Blinova discusses her subsequent work in electrophysiology and induced pluripotent stem cells, and she describes some of the challenges in ensuring that medical devices are certain to be safe and effective for patients. She describes how physics is applied in her division, particularly in computer modeling, and she describes her interest in developing human cell research as an alternative to animal testing. At the end of the interview, Blinova describes how she plans to remain close to the research as her administrative responsibilities increase, and she explains the promise of her current work on cardiac ablation for patients suffering from atrial fibrillation.

Interviewed by
Joanna Behrman
Interview date
Location
Atlanta, Georgia
Abstract

In this interview, Joanna Behrman, Assistant Public Historian for AIP, interviews Marta Dark McNeese, Associate Professor of Physics at Spelman College. McNeese recounts her childhood in Maryland and early interest in science. She describes her decision to attend the University of Virginia and to major in physics. McNeese discusses the climate she experienced during graduate school at MIT and her support network. She further elaborates on her graduate research with Michael Feld on the ablation of biological materials by lasers. She describes work as a postdoc at the Naval Research Lab and how she was drawn to join Spelman College. McNeese recounts how Etta Falconer was instrumental in growing the physics department at Spelman. McNeese discusses mentoring students at the undergraduate level and the importance of women’s colleges and HBCUs. At the end of the interview, she describes the development of her research in biophysics and her involvement with APS and NSBP.

Interviewed by
David Zierler
Interview date
Location
video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Kandice Tanner, Stadtman Investigator at the National Cancer Institute, National Institutes of Health. Tanner recounts her upbringing in Trinidad and Tobago, and she shares that her mother "knew" she was going to be a physicist before Tanner herself decided on this career track. She describes how her abilities in math and science prompted her to go to the all-boys school for high school, and she discusses the factors and opportunities leading to her undergraduate studies at South Carolina State University. Tanner describes some of the cultural adjustments coming both to the United States and to attending a historically Black college, and she explains how an encounter at a conference of the National Society of Black Physicists led to her acceptance to the graduate physics program at the University of Illinois-Urbana Champaign. She describes her research in biophysics under the direction of Enrico Gratton and she discusses her dissertation on the deconvolution of spectral photonics of a mammalian brain. Tanner discusses her postdoctoral work at University of California, Irvine where she worked with Bruce Tromberg on building a joint microscope that did optical tomography and two-photon microscopy. She describes her subsequent work at Berkeley in Mina Bissell's lab, which is where she developed her career interests in cancer research, and she discusses the formative effect of Ken Yamada's work. Tanner explains the attractions that led her to join the NCI, which offered unparalleled advantages of in vivo research. At the end of the interview, Tanner describes her current research on breast cancer and glioblastomas, and she explains why she wants to focus her research in the future on immunotherapies as among the most promising avenues in cancer treatment. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Marius Clore, NIH Distinguished Investigator, Chief of Section of Protein NMR, Lab of Chemical Physics at the NIH. Clore recounts his childhood in London and his early interests in science, and he explains in detail the British education system that leads to specialization early in one’s undergraduate career. Clore discusses his experience at University College London, where he obtained a medical degree by age 24, and his residency at St. Charles Hospital. He describes his early interests in low temperature kinetic methods and NMR spectroscopy at Mill Hill. He describes his decision to pursue NMR as a career path, which he recognized was in its early stages at that point and which he felt was ripe for development. Clore explains how he taught himself General Relativity from Dirac’s book, and his decision to study at the Planck Institute. He describes the arc of his career at the NIH and his contributions to advancing NMR research and the intellectual atmosphere that allowed him to pursue interesting projects, including HIV research and the XPLOR program. Near the end of the discussion, Clore explains the difference between biophysics and classical physics, and why the NIH has been the ideal place to pursue his research.

Interviewed by
David Zierler
Interview date
Location
National Institutes of Health, Bethesda, Maryland
Abstract

Dr. Han Wen runs the Imaging Physics Laboratory at the National Institute of Health. In this interview, Wen discusses his childhood in Beijing and the circumstances that led to his decision to pursue graduate studies in statistical quantum mechanics at the University of Maryland and its joint biophysics program that the Department of Physics ran with the NIH. Wen describes his early interest in MRI first as a graduate student at the NIH and then as a full time physicist. Wen provides an overview of his contribution to improvements in MRI technology and explains how the spirit of interdisciplinary collaboration at the NIH has enhanced his research. Wen explains his current work on x-ray CT imaging, which he hopes will improve in the future to the point when radiation exposure is minimized and the imaging quality becomes so good that many biopsies will no longer be necessary.