In this interview Joseph Silk discusses topics such as: influence of Boy Scouts in childhood; family background; high school education; early interest in mathematics; coaching by high school math teacher; math at Cambridge; influence of Dennis Sciama at Cambridge and decision to go into astronomy; fellow students at Harvard; character of Harvard astronomy department in the 1960s; David Layzer's opposition to the standard big bang model; first interest in the problem of galaxy formation and the union of hydrodynamics, radiative transfer, and cosmology at Woods Hole in summer of 1967; influence of Richard Michie; thesis work on interaction of matter and radiation in galaxy formation; ignorance about the first second of the universe and the origin of the primordial fluctuations; history of the growing confidence in the meaning of the cosmic background radiation; the philosophy of simplicity in physics; the role of the cosmic background rdiation in testing theories of galaxy formation; history of the horizon problem and Silk's attitude toward that problem; change in attitude as a result of the inflationary universe model; attitude toward the inflationary universe model; reasons why the model has become so popular; first introduction to and attitude toward the flatness problem; Silk's acceptance of appropriate initial conditions as explanations of cosmological problems; attitude toward the missing mass required by inflation; reaction to de Lapparent, Geller, and Huchra's work on inhomogeneities; ignorance of nature of inhomogeneities on scales betwen 20 megaparsecs and 2000 megaparsecs; worry over large-scale velocity fields and reported anistropies in the cosmic background radiation as challenges to standard models for the origin of fluctuations; importance of reported distortions in the spectrum of the cosmic background radiation (CBR) and difficulties of explaining such distortions if true; outstanding problems in cosmology: distortions in the CBR, galaxy formation, suitable initial conditions, satisfactory theory of inflation, value of omega; importance of metaphors and good verbal descriptions in scientific communication; interplay of theory and observation in cosmology; ideal design of the universe; question of whether the universe has a point.
In this interview, Charles Misner discusses his career in physics. Topics discussed include: John Wheeler; relativity; Arthur Wightman; Arnold Ross; Robert H. Dicke; Carl H. Brans; microwave background radiation.
More discussion of the reasons why particle physicists began working on cosmology in the 1970s; importance of theoretical work by Kirzhnitz and Linde in 1972 on broken symmetries and phase transitions; current unreality of work on the very early universe; attitude toward the inflationary universe model; successes of the inflationary universe model; aesthetic attraction of a flat universe; acceptability of postulating that we live in a flat universe; introduction to and attitude toward the horizon problem; attitude toward the inflationary universe model; incidences of being worried about scientific problems that no one else is worried about; the anthropic principle and Dirac's large number hypothesis; reaction to de Lapparent, Geller, and Huchra's work on large-scale inhomogeneities; Weinberg worried that perhaps we have misinterpreted the cosmic background radiation; Weinberg's philosophy about strategy in science; the role of consensus in science and the importance of "standard" models; outstanding problems in cosmology: distance scale of the universe, value of the deceleration parameter, origin of structure; failure of theory to explain the observed large-scale structure; possible importance of WIMPs; prematurity of work on the early universe; ideal design of the universe; preference for universes in which initial conditions do not have to be specified; Weinberg's statement in The First Three Minutes about the lack of point to the universe.
Awareness in high school of the Sandage Program to observe the rate of expansion of the universe and awareness of the impending operation of the Mt. Palomar telescope; early reading in cosmology; prejudice toward the steady state model in graduate school because of its definite predictions; the reality of cosmology as a legitimate science; Weinberg's early interest in cosmology: influence of Herman Bondi's book; concern in the early 1960s over limited contact between theory and observations; early work in the 1960s on the neutrino version of Olber's Paradox and the possibility of a degenerate sea of neutrinos; preference for an oscillating universe as the next best thing after a steady state universe because you don't have to specify initial conditions; design of an experiment to search for degenerate neutrinos; Weinberg didn't take seriously his own work in cosmology in the 1960s; the importance of the discovery of the cosmic background radiation for making cosmology a legitimate science; the origin of Weinberg's book Gravitation and Cosmology; Weinberg's regret that he spent 1969-1971 working on a textbook when he should have been working on gauge theories in particle physics; history of the application of particle physics to cosmology.
This interview discusses Robert Dicke's childhood experiments; early reading; education at University of Rochester; attitudes of older scientists about research in relativity; work on the Eotvos experiment; early reading in cosmology; early work in the 1950s setting a limit to the cosmic background radiation; motivation for predicting the cosmic background radiation; preference for an oscillating universe; Dicke's evening seminars at Princeton; the origin of the flatness problem, which Dicke first proposed in 1969; Dicke's lecture at Cornell on the flatness problem, attended by Alan Guth; the anthropic argument in connection with the flatness problem; attitude toward the inflationary universe model; attitude toward Center for Astrophysics (CfA) red shift surveys by de Lapparent, Margaret Geller, and John Huchra; Dicke's amazement at the existence of so much matter in the universe; discussion of the anthropic principle; images and metaphors in scientific work; the relationship between theory and observations in cosmology; attitude toward extrapolating the big bang model back to very early time; why Dicke prefers an oscillating universe; the origin of the universe; the question of whether the universe has a point; the question of why cosmology was not taken seriously as a science for a long time.