University of Utah

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Dean Zollman discusses: interests in current physics education research (PER); family background and childhood; PhD at Maryland under Carl Levinson and Manoj Banerjee; involvement in civil rights movement; postdoc at Kansas State; collaborations with Bob Fuller and Tom Campbell; involvement with American Association of Physics Teachers (AAPT); Jack Renner’s research on the intellectual development of college students; overview of the big names and ideas in PER in the early-to-mid 70s; research on how to meet students’ current developmental levels and capabilities; hands-on and visual approaches to physics learning; NSF-funded work at University of Utah, developing instructional laser discs with Bob Fuller and Tom Campbell; forays into using video for physics instruction and early application of computers to physics education; Fulbright at University of Munich; Fascination of Physics collaboration with his partner J.D. Spears; teaching quantum mechanics visually; winning the Milikan Award; the Physics InfoMall CD-ROM project; relationship with NSF; Center for Research and Innovation in STEM Education project and COVID’s damage to its realization; Oersted Medal; crossovers with field of psychology in researching how learning happens; internet-based Pathways project for high school instructors; collaborations with the International Commission on Physics Education; the excitement of helping people learn; and the hope that innovative teaching strategies will draw in a more diverse student body to solve the big physics questions of our time. Toward the end of the interview, Zollman looks forward to continuing PER both on the fundamentals of how students learn as well as on applied methods for teaching. He notes that the quest to understand the mechanisms of learning invite a more interdisciplinary approach going forward. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with David Griffiths, Professor Emeritus of Physics at Reed College. Griffiths discusses his current projects on Sidney Coleman’s lecture series and a completing a fifth edition of his textbook on electrodynamics. He surveys the current interplay between experiment in theory in today’s world of particle physics, and he reflects on his career rooted in small teaching colleges, as opposed to pursuing an alternate path at large research universities. Griffiths recounts his childhood in Berkeley and then in Madison in support of his father’s academic career, and he describes finishing out high school in Vermont before attending Harvard. He laments the poor physics education Harvard offered when he was an undergraduate, and he explains his decision to remain at Harvard for graduate school, where Sidney Coleman and Carl Bender advised his thesis work on massless field theory. Griffiths discusses his postdoctoral appoints at the University of Utah and then the University of Massachusetts, and he explains how the November revolution at SLAC resonated with him. After brief teaching appointments at Mount Holyoke and Trinity Colleges, Griffiths explains his decision to join the faculty at Reed and how he learned to strike the right balance between teaching and research. He describes the origins and his motivations in writing textbooks for physics students and how he has integrated pedagogy into his mentorship of students. Griffiths discusses the influence of Kuhn in his more recent survey of physics in the twentieth century, and at the end of the interview, he explains why including students in his own research is both personally and academically meaningful.

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews William T. Silfvast, Professor Emeritus of Optics at the University of Central Florida. Silfvast recounts his childhood in Salt Lake City and he discusses his education at the University of Utah and a formative internship he spent at NASA Ames Laboratory. He describes his growing interests in lasers during graduate school at Utah working under the direction of Grant Fowles. Silfvast discusses his postdoctoral research as a NATO fellow at Oxford before he joined the Electronics Research Lab at Bell. He describes his major research work at Bell discovering new types of lasers, using optical detectors and photomultipliers for this research, and he explains his motivations in both basic research and the practical applications he saw for lasers in healthcare and in industry. Silfvast explains his decision to join the University of Central Florida where CREOL, the Center for Research and Education in Optics and Lasers was getting started. He recounts the enormous growth and success of the Center over the past thirty years, and he explains his motivations for writing Fundamentals of Lasers which is considered a standard text in the field. At the end of the interview, Silfvast reflects on his contributions to laser science, he provides an overview of all the ways lasers have become central to modern existence, and he explains how modern computing has revolutionized laser science and applications.     

Interviewed by
Charles Weiner
Interview date
Location
Massachusetts Institute of Technology, Cambridge, Massachusetts
Abstract

Family background; grows up in California; early interest in electronics. Undergraduate and graduate studies at Caltech. Strong interest in history of science as undergraduate. Ph.D. in physics, 1932. University of California at Berkeley, 1932-1934. MIT from 1934; founder of the Radioactivity Center. Starts first course designated "nuclear physics," January 1935. Strong interest in study of radium poisoning; radium tolerance in humans, cancer research. World War II work, postwar work; establishment of Laboratory for Nuclear Science and Engineering. Markle Foundation supplies funds for the Radioactivity Center's Cyclotron; the 1940 Conference on Applied Nuclear Physics (sponsored by the American Institute of Physics and MIT); World War II work at the Radioactivity Center at MIT; radium dial paint studies; radium and plutonium safety regulations (Glenn Seaborg); work relations with the Manhattan Project; the MAMI (marked mine) project reveals indication of German plutonium project. Also prominently mentioned are: Carl David Anderson, Joe Aub, Joe Boyce, Vannevar Bush, Evan Byers, John Cockcroft, Robert Colenko, Arthur Holly Compton, Karl Taylor Compton, Enrico Fermi, Horace Ford, Ralph Howard Fowler, George Gamow, Newell Gingrich, Clark Goodman, Leslie Richard Groves, George Harrison, Hobart, Elmer Hutchisson, Ray Keating, Arthur Kip, Pinkie Klein, Rudolf Ladenburg, Charles Christian Lauritsen, Thomas Lauritsen, Ernest Orlando Lawrence, Gilbert Newton Lewis, Willard Frank Libby, Milton Stanley Livingston, Leonard Benedict Loeb, Sam Lynd, Edwin Mattison McMillan, Robert Andrews Millikan, J. Robert Oppenheimer, Elmer Robinson, Ernest Rutherford, John Clarke Slater, Sorensen, Robert Jamison Van de Graaff, Ernest Thomas Sinton Walton, Martin Wittenberg, Jerrold Reinach Zacharias; American Institute of Physics; American Cancer Society, Bausch and Lomb Co., National Research Council, Radiation Standards Committee, United States Federal Cancer Commission, United States Food and Drug Administration, United States National Bureau of Standards, United States Navy, University of Rochester, University of Utah Salt Lake City Project, Wesleyan University, World War I, and World War II.

Interviewed by
Charles Weiner
Interview date
Location
Massachusetts Institute of Technology, Cambridge, Massachusetts
Abstract

Family background; grows up in California; early interest in electronics. Undergraduate and graduate studies at Caltech. Strong interest in history of science as undergraduate. Ph.D. in physics, 1932. University of California at Berkeley, 1932-1934. MIT from 1934; founder of the Radioactivity Center. Starts first course designated "nuclear physics," January 1935. Strong interest in study of radium poisoning; radium tolerance in humans, cancer research. World War II work, postwar work; establishment of Laboratory for Nuclear Science and Engineering. Markle Foundation supplies funds for the Radioactivity Center's Cyclotron; the 1940 Conference on Applied Nuclear Physics (sponsored by the American Institute of Physics and MIT); World War II work at the Radioactivity Center at MIT; radium dial paint studies; radium and plutonium safety regulations (Glenn Seaborg); work relations with the Manhattan Project; the MAMI (marked mine) project reveals indication of German plutonium project. Also prominently mentioned are: Carl David Anderson, Joe Aub, Joe Boyce, Vannevar Bush, Evan Byers, John Cockcroft, Robert Colenko, Arthur Holly Compton, Karl Taylor Compton, Enrico Fermi, Horace Ford, Ralph Howard Fowler, George Gamow, Newell Gingrich, Clark Goodman, Leslie Richard Groves, George Harrison, Hobart, Elmer Hutchisson, Ray Keating, Arthur Kip, Pinkie Klein, Rudolf Ladenburg, Charles Christian Lauritsen, Thomas Lauritsen, Ernest Orlando Lawrence, Gilbert Newton Lewis, Willard Frank Libby, Milton Stanley Livingston, Leonard Benedict Loeb, Sam Lynd, Edwin Mattison McMillan, Robert Andrews Millikan, J. Robert Oppenheimer, Elmer Robinson, Ernest Rutherford, John Clarke Slater, Sorensen, Robert Jamison Van de Graaff, Ernest Thomas Sinton Walton, Martin Wittenberg, Jerrold Reinach Zacharias; American Institute of Physics; American Cancer Society, Bausch and Lomb Co., National Research Council, Radiation Standards Committee, United States Federal Cancer Commission, United States Food and Drug Administration, United States National Bureau of Standards, United States Navy, University of Rochester, University of Utah Salt Lake City Project, Wesleyan University, World War I, and World War II.

Interviewed by
Charles Weiner
Interview dates
May 2 and 3, 1972
Location
Massachusetts Institute of Technology, Cambridge, Massachusetts
Abstract

Family background; grows up in California; early interest in electronics. Undergraduate and graduate studies at Caltech. Strong interest in history of science as undergraduate. Ph.D. in physics, 1932. University of California at Berkeley, 1932-1934. MIT from 1934; founder of the Radioactivity Center. Starts first course designated "nuclear physics," January 1935. Strong interest in study of radium poisoning; radium tolerance in humans, cancer research. World War II work, postwar work; establishment of Laboratory for Nuclear Science and Engineering. Markle Foundation supplies funds for the Radioactivity Center's Cyclotron; the 1940 Conference on Applied Nuclear Physics (sponsored by the American Institute of Physics and MIT); World War II work at the Radioactivity Center at MIT; radium dial paint studies; radium and plutonium safety regulations (Glenn Seaborg); work relations with the Manhattan Project; the MAMI (marked mine) project reveals indication of German plutonium project. Also prominently mentioned are: Carl David Anderson, Joe Aub, Joe Boyce, Vannevar Bush, Evan Byers, John Cockcroft, Robert Colenko, Arthur Holly Compton, Karl Taylor Compton, Enrico Fermi, Horace Ford, Ralph Howard Fowler, George Gamow, Newell Gingrich, Clark Goodman, Leslie Richard Groves, George Harrison, Hobart, Elmer Hutchisson, Ray Keating, Arthur Kip, Pinkie Klein, Rudolf Ladenburg, Charles Christian Lauritsen, Thomas Lauritsen, Ernest Orlando Lawrence, Gilbert Newton Lewis, Willard Frank Libby, Milton Stanley Livingston, Leonard Benedict Loeb, Sam Lynd, Edwin Mattison McMillan, Robert Andrews Millikan, J. Robert Oppenheimer, Elmer Robinson, Ernest Rutherford, John Clarke Slater, Sorensen, Robert Jamison Van de Graaff, Ernest Thomas Sinton Walton, Martin Wittenberg, Jerrold Reinach Zacharias; American Institute of Physics; American Cancer Society, Bausch and Lomb Co., National Research Council, Radiation Standards Committee, United States Federal Cancer Commission, United States Food and Drug Administration, United States National Bureau of Standards, United States Navy, University of Rochester, University of Utah Salt Lake City Project, Wesleyan University, World War I, and World War II.