New York University

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Glennys Farrar, professor at New York University, discusses her career and shifting interests within physics. She details her time as an undergraduate student at University of California, Berkeley. Farrar discusses how she chose to attend Princeton University for graduate school to further her interest in particle theory. She discusses her thesis research which calculated the rate of decay for The Lambda under the mentorship of her advisor Sam Treiman. She describes the social isolation she faced within the physics department as the only woman. Farrar discusses her time as a postdoc at Caltech and details her research on the pion decay constant, as well as pioneering the field of phenomenological supersymmetry. Additionally, she speaks on the sexism she experienced while at Caltech. She details her experience at Rutgers University where she worked on Hadron Physics. Farrar discusses her time at New York University as Chair of the Department of Physics and her efforts putting together a strong faculty. She also details her growing interest in cosmology at this time and describes founding the Center for Cosmology and Particle Physics. She also speaks about her work on the stellar tidal disruption phenomenon. Lastly, Farrar notes her excitement for the increase in computation power in the future and reflects on the merging of different fields of physics.

Interviewed by
Robert Crease
Interview dates
January 9, 10 & 18, 2016
Location
Amherst, MA
Abstract

Interview with Toichiro Kinoshita, a Japanese-born physicist who is best known for pioneering the value of muon g-2, the anomalous magnetic moment of the muon. Kinoshita describes his education—Daiichi High School, Tokyo University—how he avoided military service during World War II, and meeting and marrying his wife, Masako Matsuoka. He describes his introduction to quantum electrodynamics and renormalization through papers by Dyson and Feynman. His early research also involved work on the C-meson theory developed by Sakata. After the war, Kinoshita came to the United States to the Institute for Advanced Study, then as a postdoc at Columbia in 1954. In 1955 Kinoshita moved to Cornell. He became particularly interested in making calculations to test the theory of quantum electrodynamics. He describes his introduction to computers at Princeton, using von Neumann’s computer. The interview covers how he became interested in calculating g-2 at CERN in 1966, and his subsequent efforts, the first being the sixth order calculation, where the light-by-light diagram enters for the first time. He describes his efforts doing the eighth order calculation, and his collaboration with Makiko Nio, as well as his calculations of the tenth order. Physicists whom he describes more than briefly include Kodaira, Tomonaga, Nambu, and Nio. Near the end, Kinoshita describes the importance of g-2 experiments, and his recent work. 

Interviewed by
David Zierler
Interview dates
July 27 and August 18, 2020
Location
Video conference
Abstract

Interview with Anne Kinney, Deputy Center Director of the NASA Goddard Space Flight Center. Kinney recounts her childhood in Wisconsin and her early interests in science. She describes her undergraduate experience at the University of Wisconsin where she pursued degrees in physics and astronomy. Kinney discusses her time in Denmark at the Niels Bohr Institute before completing her graduate work at NYU relating to the International Ultraviolet Explorer. She explains the opportunities leading to her postdoctoral appointment at the Space Telescope Science Institute in Baltimore where she focused on obtaining optical data and near-infrared data to understand spectral energy distribution for quasars and blazars. Kinney discusses her work on the aberrated Hubble Telescope and her new job at NASA Headquarters where she became head of Origins before she was transferred to Goddard where she became division direct of the Planetary Division. She describes Goddard’s efforts to promote diversity and she describes her subsequent position as chief scientist at Keck Observatory before returning to Washington to join the National Science Foundation to be head of the Directorate for Mathematical and Physical Sciences. Kinney provides a broad view of the NSF budgetary environment, and she explains the circumstances that led her back to NASA to her current work. She describes where Goddard fits into NASA’s overall mission and she explains her interest in promoting NASA in an educational framework to children. At the end of the interview, Kinney conveys her excitement about the James Webb Telescope and why she is committed to ensuring that NASA is a driver behind the broader effort to make astronomy and physics more diverse.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Arthur Eisenkraft, Professor of Physics, Distinguished Professor of Science Education, and Director of the Center of Science and Math in Context (COSMIC) at the University of Massachusetts at Boston. He explains the origins of COSMIC and its role in his transition from high school to university teaching, and he discusses his current focus on the Wipro Science Education Fellowship Program. Eisenkraft surveys current trends in science pedagogy, and he reflects on the value of UMass Boston’s diverse student population for his research. He recounts his upbringing in Queens, his strong public school education, and his decision to go to Stony Brook for college where he started to think about education in scientific terms. Eisenkraft discusses his experience with the Peace Corps in Nepal before returning to Stony Brook for graduate school to work under Cliff Swartz on Fourier optics. He discusses his PhD research at NYU in science education and he explains his decision to pursue high school teaching. Eisenkraft surveys his advisory work for the National Research Council and how the NAEP Frameworks Project started. He explains his strategic partnership with Toshiba, and he describes the feedback mechanisms that inform his research. At the end of the interview, Eisenkraft frames teaching as a means to learning, and he conveys his interest in watching how higher education plans to combat systemic racism in the future.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Roger Schneider, retired and formerly Associate Director for Science of the Center for Devices and Radiological Health at the FDA. Schneider recounts his childhood in Yakima, Washington, and he describes his early interests in science.  He discusses his undergraduate education at Stanford, and he explains his motivation to join the Public Health Service as a physicist working to detect nuclear fission products in the environment.  Schneider describes his graduate education at NYU in the Department of Nuclear Engineering, and he explains how this work led to his appointment as part of an experimental physics group set up by the Public Health Service in Rockville, Maryland.  He explains the lab’s mission to detect radiation emanating from various medical and consumer products, and he describes the Congressional legislation that created the FDA.  Schneider provides an institutional history of the origins of the National Center for Radiological Health and its formative work on the safety of lasers, ultraviolet sources, and radio waves.  He explains the negotiations that inevitably arose between industry, medical practitioners, and the relevant regulatory agencies charged with safety and efficacy.  Schneider explains the origins of MOSFET technology and its development by the semiconductor industry and the valuable collaborations he pursued with the International Society for Optical Engineering. He conveys the importance of the Radiation Control Act to standardize radiation thresholds for patient exposure and the impact of CT technology on these standards. Schneider discusses his contributions to mammography and the diagnostic challenges inherent in breast cancer detection. At the end of the interview, Schneider reflects on his career and how he has contributed to the mission of the FDA while working to ensure that that medical industry was making products that were held to the highest standards of safety.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Steven Koonin, University Professor at New York University, recounts his childhood in Brooklyn and his education at Stuyvesant High School, which he credits for providing an excellent education in math and science. He explains his decision to pursue a degree in physics at Caltech, where Willie Fowler supervised him, and where he focused on nuclear physics. Koonin discusses his graduate work at MIT, where he studied under Art Kerman and focused on Hamiltonian variational principles for quantum many-body systems and on the study of nuclear motion. He explains the opportunity that led him back to Caltech for his first faculty position without going through a postdoctoral experience first. He describes his interest in then doing a postdoc in Copenhagen, where he had more opportunities to collaborate on theoretical nuclear physics than at Caltech. Koonin describes the pleasures of teaching quantum mechanics to undergraduates, he describes the impact of personal computing technology on his research in the mid-1980s, and he discusses his contributions in extrapolating nuclear reactions to get astrophysical rates. Koonin discusses his involvement in national security issues including the Strategic Defense Initiative as part of the JASON group, and his advisory work for the Department of Energy and DARPA. He describes his administrative accomplishments as vice president at provost at Caltech and the institutional advancements that he fostered in biology and high-performance computing. Koonin explains his position to take a position at BP as chief scientist where he had a mandate to push the company to pursue alternative energy resources, and he describes his decision to accept Steve Chu’s offer to run the Office of Science at DOE during the first Obama administration. Koonin describes his focus there on exascale computing and high-energy density science, and he discusses his long-range interest in climate science and some of the inherent challenges this field presents in both the scientific and political realms. He describes his decision to accept his current position at NYU, and at the end of the interview, Koonin describes his goals in founding the Center for Urban Science and Progress. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Paul Chaikin, Silver Professor of Physics at NYU, recounts his childhood in Brooklyn and he describes his early interests in math and science and his education Stuyvesant High School. He discusses his undergraduate education at Caltech, he conveys how special it was to learn from Feynman and Pauling, and he explains the fields that would go on to form his area of specialty, soft matter physics. Chaikin explains his reasoning to pursue a graduate degree with Bob Schrieffer at Penn, where he did his thesis research on the Kondo effect in superconductors. He describes his first postgraduate work at UCLA where he developed an expertise in thermoelectric power, and he describes the intellectual and technological developments that paved the way for the creation of soft matter physics as a distinct field. Chaikin explains what it would take to solve the many-body problem of nonequilibrium phenomena, and he describes the delicate nature of collaborating with biologists while ensuring they don’t overtake the field. He discusses his joint appointment with Penn physics and the research laboratory at Exxon, and he explains his move to Princeton, which was just starting to develop a program in soft matter physics. Chaikin describes the famous experiment that discovered that M&M shapes (ellispoids) provided the most efficient and minimal negative space in packing applications, and he explains his decision to join the faculty at NYU. At the end of the interview, Chaikin reflects on some of the remaining mysteries in the field, and he describes his interest in pursing research on self-assembly among soft condensed matters.  

 

Interviewed by
David Zierler
Interview date
Location
Remote Interview
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews David J. Pine, Silver Professor, professor of physics, and Chair of the Chemical and Biomolecular Engineering Department at the NYU Tandon School of Engineering. Pine explains the background of NYU’s takeover of Brooklyn Poly and where these changes fit within the overall expansion of soft matter physics in the U.S. He recounts his childhood as the son of a pastor and moving many times as his father preached for different congregations. He discusses his interests and talents in the sciences during high school, and he explains his decision to attend Wheaton College. Pine describes how he developed his interest in physics in college and he describes his research at Argonne. He discusses his decision to go to Cornell for his graduate work, where he studied under Bob Cotts and did research on hydrogen diffusion in metals. Pine recounts his postdoctoral research at Pitt, where he worked with Walter Goldberg on spinodal decomposition, and he describes his first faculty position at Haverford, where he built a lab from scratch focusing on the diffusive dynamics of shear fluids. He explains his decision to accept a position with Exxon Labs, which he describes as an excellent place for basic science, and he describes the factors leading to his appointment on the chemical engineering faculty at UCSB, where he focused his research on polymer solutions and colloidal suspension. Pine describes some of the exciting advances in physics that were happening at the Kavli Institute. He describes his collaborations with Paul Chaikin and the prospect of joining the faculty at NYU, where he has continued his research. At the end of the interview, Pine reflects on how he has tried to maximize the benefits of working at the nexus of several disciplines, and he explains why entropy has been a concept of central importance to all of his research.

Interviewed by
Greg Good
Interview date
Abstract

Edward Gerjuoy ws born in Brooklyn, New York, on May 19, 1918, of a Romanian immigrant mother and Russian immigrant father. He attended Thomas Jefferson High School, along with other classmates who became well-known physicists. He studied at City College of New York. He was minimally involved in the Young Communist League. He completed the Ph.D. in physics under J. Robert Oppenheimer at the University of California, Berkeley, in 1942. Gerjuoy discusses his teachers, professors, and fellow students. He describes the classroom atmosphere, the personalities, and the courses. Gerjuoy, who learned no calculus in high school, became a theoretical physicist, specializing in quantum mechanics. During World War II, Gerjuoy worked as a civilian scientist on anti-submarine warfare, ultimately leaving a Sonar Analysis Group under Lyman Spitzer. After the war, he taught at the University of Southern California, New York University, and the University of Pittsburgh. He also worked at Westinghouse Research Laboratory, General Atomic Laboratory, and directed a plasma research group at RCA Laboratories in New Jersey. At age 56, Gerjuoy decided to take a sabbatical and started a degree in law. While on leave from the University of Pittsburgh, he served as one of three judges on the Pennsylvania Environmental Hearing Board. He nevertheless remained active in the American Physical Society, especially on the Committee on the International Freedom of Scientists (CIFS) and the Panel on Public Affairs (POPA). He played a role in the Wen Ho Lee case regardin gnational security matters at Los Alamos. He was editor-in-chief of Jurimetrics Journal of Law, Science, and Technology for six years. His interest in recent years relates to quantum computing.

Interviewed by
Greg Good
Interview date
Abstract

Edward Gerjuoy ws born in Brooklyn, New York, on May 19, 1918, of a Romanian immigrant mother and Russian immigrant father. He attended Thomas Jefferson High School, along with other classmates who became well-known physicists. He studied at City College of New York. He was minimally involved in the Young Communist League. He completed the Ph.D. in physics under J. Robert Oppenheimer at the University of California, Berkeley, in 1942. Gerjuoy discusses his teachers, professors, and fellow students. He describes the classroom atmosphere, the personalities, and the courses. Gerjuoy, who learned no calculus in high school, became a theoretical physicist, specializing in quantum mechanics. During World War II, Gerjuoy worked as a civilian scientist on anti-submarine warfare, ultimately leaving a Sonar Analysis Group under Lyman Spitzer. After the war, he taught at the University of Southern California, New York University, and the University of Pittsburgh. He also worked at Westinghouse Research Laboratory, General Atomic Laboratory, and directed a plasma research group at RCA Laboratories in New Jersey. At age 56, Gerjuoy decided to take a sabbatical and started a degree in law. While on leave from the University of Pittsburgh, he served as one of three judges on the Pennsylvania Environmental Hearing Board. He nevertheless remained active in the American Physical Society, especially on the Committee on the International Freedom of Scientists (CIFS) and the Panel on Public Affairs (POPA). He played a role in the Wen Ho Lee case regardin gnational security matters at Los Alamos. He was editor-in-chief of Jurimetrics Journal of Law, Science, and Technology for six years. His interest in recent years relates to quantum computing.