University of Pennsylvania, Philadelphia, Pennsylvania
Abstract
Childhood and high school education; undergraduate eduction at Massachusetts Institute of Technology, Bachelor's thesis with John Slater on energy level spacings in the multiple structure of transition metal atoms; graduate education at Urbana, Illinois, first paper under John Bardeen on the problem of transport of electrons bound to surfaces in semiconductors (Bardeen, David Pines); doctoral thesis on superconductivity, theoretical issues relevant to it; Leon Cooper's contributions, field theory, the bound state; Bardeen wins the Nobel Prize, emotional letdowns related to slow results of research; Stevens Conference on the many-body problem and American Physical Society Meeting, 1957; application of the Tomonaga variational technique, work on it with Cooper and Bardeen, problems with the second order phase transition, Bardeen's solution of the wave function; refinements of the new theory of superconductivity; feelings about working with Bardeen and Cooper; reactions of the scientific community to the new theory (Niels Bohr, Norman Ramsey); views on scientific creativity; the square dance analogy of the B-C-S theory; the Nobel Prize, 1972; American and Soviet competition for solution of superconductivity; objections to the theory based on gauge invariance properties; aftermath of discovery and Nobel Prize. Also prominently mentioned are: Jane Bardeen, John Bardeen, Nikolay N. Bogoliubov, Bohr family, Keith Allan Brueckner, Eli Burstein, Butler, Leon Cooper, Richard Phillips Feynman, Dave Frisch, Frölich, Ernest Guillemin, Douglas Rayner Hartree, Werner Heisenberg, David Hilbert, George F. Koster, Fritz London, Francis Eugene Low, Arkadii Beinusovich Migdal, David Pines, Léon Rosenfeld, Blat Schatloff, Ann Schrieffer, Frederick Seitz, Charles Slichter, Gregor Wentzel; Institute for Theoretical Physics (Copenhagen), and Niels Bohr Institutet.
Childhood and high school education; undergraduate eduction at Massachusetts Institute of Technology, Bachelor's thesis with John Slater on energy level spacings in the multiple structure of transition metal atoms; graduate education at Urbana, Illinois, first paper under John Bardeen on the problem of transport of electrons bound to surfaces in semiconductors (Bardeen, David Pines); doctoral thesis on superconductivity, theoretical issues relevant to it; Leon Cooper's contributions, field theory, the bound state; Bardeen wins the Nobel Prize, emotional letdowns related to slow results of research; Stevens Conference on the many-body problem and American Physical Society Meeting, 1957; application of the Tomonaga variational technique, work on it with Cooper and Bardeen, problems with the second order phase transition, Bardeen's solution of the wave function; refinements of the new theory of superconductivity; feelings about working with Bardeen and Cooper; reactions of the scientific community to the new theory (Niels Bohr, Norman Ramsey); views on scientific creativity; the square dance analogy of the B-C-S theory; the Nobel Prize, 1972; American and Soviet competition for solution of superconductivity; objections to the theory based on gauge invariance properties; aftermath of discovery and Nobel Prize. Also prominently mentioned are: Jane Bardeen, John Bardeen, Nikolay N. Bogoliubov, Bohr family, Keith Allan Brueckner, Eli Burstein, Butler, Leon Cooper, Richard Phillips Feynman, Dave Frisch, Frölich, Ernest Guillemin, Douglas Rayner Hartree, Werner Heisenberg, David Hilbert, George F. Koster, Fritz London, Francis Eugene Low, Arkadii Beinusovich Migdal, David Pines, Léon Rosenfeld, Blat Schatloff, Ann Schrieffer, Frederick Seitz, Charles Slichter, Gregor Wentzel; Institute for Theoretical Physics (Copenhagen), and Niels Bohr Institutet.
Early career through 1939. Midwestern background; education at University of Texas, graduate work at Harvard University in theoretical physics under Edwin C. Kemble and John Van Vleck, 1929-1933; traveling fellowship (chiefly in Germany, 1932); positions at Harvard, University of Wisconsin, Princeton University, and New York University. The nature of theoretical nuclear physics work in the 1930s including nuclear models and Feenberg's work with Eugene P. Wigner on nuclear forces. Also prominently mentioned are: John Bardeen, Niels Henrik David Bohr, C. P. Boner, Gregory Breit, Walter M. Elsasser, Wendell Furry, George Gamow, Julian Knipp, Ettore Majorana, R. L. Moore, Otto Oldenburg, Melba Newell Phillips, Roberts, Simon Share, C. G. Smith, Arnold Johannes Wilhelm Sommerfeld, Carl Friedrich Weizsäcker, (Freiherr von); Institute for Theoretical Physics (Copenhagen), Niels Bohr Institutet, and Raytheon Corporation.
Early career through 1939. Midwestern background; education at University of Texas, graduate work at Harvard University in theoretical physics under Edwin C. Kemble and John Van Vleck, 1929-1933; traveling fellowship (chiefly in Germany, 1932); positions at Harvard, University of Wisconsin, Princeton University, and New York University. The nature of theoretical nuclear physics work in the 1930s including nuclear models and Feenberg's work with Eugene P. Wigner on nuclear forces. Also prominently mentioned are: John Bardeen, Niels Henrik David Bohr, C. P. Boner, Gregory Breit, Walter M. Elsasser, Wendell Furry, George Gamow, Julian Knipp, Ettore Majorana, R. L. Moore, Otto Oldenburg, Melba Newell Phillips, Roberts, Simon Share, C. G. Smith, Arnold Johannes Wilhelm Sommerfeld, Carl Friedrich Weizsäcker, (Freiherr von); Institute for Theoretical Physics (Copenhagen), Niels Bohr Institutet, and Raytheon Corporation.