Black holes (Astronomy)

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Surjeet Rajendran, Associate Professor of Physics at Johns Hopkins University. He provides an overview of his current research activities with David Kaplan in black hole physics, new short distance forces, and modifications of quantum mechanics, and he shares his reaction on the recent g-2 muon anomaly at Fermilab. Rajendran explains why he identifies as a “speculator” in physics, he recounts his childhood in Chennai, India, and he discusses his grandparents’ communist activism, his Jesuit schooling, and how science offered a refuge for rebellion from these influences. He explains his decision to transfer from the Indian Institute of Technology to Caltech as an undergraduate, where he worked with Alan Weinstein on LIGO. Rajendran discusses his graduate research at Stanford, where KIPAC had just started, and where Savas Dimopoulos supervised his work on PPN parameters and solving the seismic noise problem on atom interferometers for LIGO. He describes his postdoctoral work, first at MIT and then at Johns Hopkins, when he began to collaborate with Kaplan on axion detection and the electroweak hierarchy problem. Rajendran explains the rise and fall of the BICEP project, and his Simons Foundation supported work on CASPEr. He discusses his interest in bouncing cosmology and firewalls in general relativity, and he conveys optimism that LIGO will advance our understanding of black hole information. At the end of the interview, Rajendran reviews his current interests in the Mössbauer effect, and explains how nice it was to win the New Horizons in Physics prize, and he prognosticates on how the interplay between observational and theoretical cosmology will continue to evolve and perhaps resolve fundamental and outstanding questions in the field.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Berndt Müller, James B. Duke Professor of Physics at Duke University. The interview begins with Müller discussing his current work on quark-gluon plasma physics and the connections between nuclear physics and cosmology. Müller then recounts his family history in Germany during and after WWII, as well as his childhood in West Germany. He recalls his undergraduate studies at Goethe University Frankfurt, where it was the inspiring lectures that catalyzed his enthusiasm for physics. Müller explains the heavy ion research he was involved in at the time, as well as his master’s thesis on the Dirac equation. He recounts his first visit to Berkeley Lab in 1972 and his subsequent acceptance of a postdoc at University of Washington and a fellowship at Yale. Müller then returned to Frankfurt as an associate professor and explains how he got involved in quark-gluon plasma research. Müller talks about the creation of the RHIC and how that led him to pursue his next job in the US, landing at Duke. He discusses his involvement with the Institute of Nuclear Theory at the University of Washington, as well as his work at Brookhaven over the years. Müller recalls the pros and cons of the administrative side of academia, which he experienced as the Chair of the Faculty of Physics and then Dean of the Faculty of Natural Sciences at Duke. The interview concludes with Müller’s reflections on winning the Feshbach Prize and his predictions for the future of theoretical nuclear physics.

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Peter W. Shor, Morss Professor of Applied Math at MIT. Shor recounts his childhood in Brooklyn and then Washington, DC, and he describes his discovery early in childhood that he had a special aptitude in math. He describes his undergraduate experience at Caltech, where he pursued an interest in combinatronics, and he explains his decision to attend MIT for graduate school, where he studied under Tom Leighton. Shor discusses his graduate work at Bell Labs and he explains how applied math research was relevant to Bell's business model. He describes his thesis research which used math to design good algorithms for computer problem solving, and he discusses his postdoctoral research at the Mathematical Science Research Institute at Berkeley where he focused on computational geometry problems. Shor explains his decision to return to Bell Labs and his focus on optical fibers, and he explains Google's influence in achieving breakthroughs in theoretical computer science. He describes the origins of Shor's Algorithm and Charles Bennett's involvement in this development. Shor explains when true quantum computing became theoretically feasible, and the various budgetary, theoretical, and political challenges that stand between the current state of play and quantum computer realization. He explains his interest in returning to academia at the time Bell Labs was coming apart, and he explains his contributions to advancing quantum information and the utility this has for AdS/CFT research. Shor describes his current interest in black holes and quantum money, and at the end of the interview, he explains why the question of whether NP = P remains fundamental.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Barry Barish, Linde Professor of Physics Emeritus at Caltech, where he retains a collaboration with LIGO, and Distinguished Professor of Physics at UC Riverside. Barish recounts his childhood in Los Angeles and emphasizes that sports were more important than academics to him growing up. He explains his decision to attend Berkeley as an undergraduate, where his initial major was engineering before he realized that he really loved physics, and where he was advised by Owen Chamberlain. Barish describes the fundamental work being done at the Radiation Lab and how he learned to work the cyclotron. He explains why Fermi became his life-long hero and why he decided to stay at Berkeley for graduate school, even though the school’s general policy required students to pursue their doctoral work elsewhere. Barish describes his graduate research under the direction of Carl Hemholz, and he explains how he developed a relationship with Richard Feynman which led to his postdoc and ultimately, his faculty appointment at Caltech. He discusses how his interest in neutrinos led to his work at Fermilab and why the big question at the time was how to discover the W boson. Barish describes his key interests in magnetic monopoles and neutrino oscillations, and he describes his involvement with the SSC project through a connection with Maury Tigner at Berkeley, which developed over the course of his collaborations with Sam Ting. He explains that his subsequent work with LIGO never would have happened had the SSC been viable, and he describes his early connection as a young student learning general relativity as a connecting point to LIGO. Barish describes his general awareness of what Rai Weiss had been doing prior to 1994 and he relates the state of affairs of LIGO at that point. He conveys the intensity of his involvement from 1994 to 2005 and he describes the skepticism surrounding the entire endeavor and what success would have looked like without any assurance that the experiment would actually detect gravitational waves. Barish describes the road to detection as one of incremental improvements to the instrumentation achieved over several years, including the fundamental advance of active seismic isolation. He narrates the day of the detection, and he surveys the effect that the Nobel Prize has had on the LIGO collaboration and its future prospects. Barish notes the promise that AI offers for the future of LIGO, and he prognosticates the future viability of the ILC. At the end of the interview Barish explains what LIGO has taught us about the universe, and what questions it will allow us to ask in the future as a result of its success. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Peter L. Bender, Senior Research Associate at the University of Colorado and the Joint Institute for Laboratory Astrophysics (JILA) in Boulder. Bender recounts his childhood in New Jersey, he describes his undergraduate focus in math and physics at Rutgers, and he explains his decision to pursue a graduate degree in physics at Princeton to work with Bob Dicke. He discusses his dissertation research on optical pumping of sodium vapor, which was suggested by Dicke as a means of doing precision measurements of atoms. Bender discusses his postdoctoral research at the National Bureau of Standards, where he focused on magnetic fields and he narrates the administrative and national security decisions leading to the creation of JILA in Boulder, where the laboratory would be less vulnerable to nuclear attack. He describes his work on laser distance measurements to the moon and his collaborations with NASA, and he discusses his long-term advisory work for the National Academy of Sciences and the National Research Council. Bender describes the origins of the NASA Astrotech 21 Program and the LISA proposal, he explains his more recent interests in massive black holes, geophysics and earth science, and he explains some of the challenges associated with putting optical clocks in space. At the end of the interview, Bender reflects on the central role of lasers in his research, and he explains the intellectual overlap of his work in astrophysics and earth physics, which literally binds research that is based both in this world and beyond it.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Gia Dvali discusses: current interests in the physics of black holes and their capacity to store information; learning about black holes by examining and observing the universal underlying physics of other seemingly unrelated saturated systems or “saturons”; development of a theory of a black hole as a composite object; ability to produce saturated systems in a laboratory; papers about trying to understand a black hole as a neural network, ideas of using black hole information storage and processing mechanisms in quantum computing; process of how one quantifies the information capacity of a black hole using the micro-state entropy of an object; connection between black hole research and understanding the universe as a saturated system with area entropy; unitarity and maximal entropy; research on de Sitter space and the cosmological constant puzzle; ultraviolet sensitivity; Einstein gravity and the Planck length; naturalness as a guideline to making breakthroughs. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Sandra Faber, Professor Emerita in the Department of Astronomy and Astrophysics, UC Santa Cruz and Astronomer Emerita at the University of California Observatories discusses her career and her involvement in various projects. Faber describes the relationship between these appointments, and she describes some of the benefits that remote work has allowed during the Covid-19 pandemic. She describes the DEIMOS spectrograph project as an outgrowth from her interest in galaxy formation and the centrality of steady state theory to this research. Faber discusses the importance of NSF support for her work, and she explains some of the cultural sensitivities in setting up a major telescope project in Hawaii. She explains the difference between ancient and more recent galaxy formation, and she explains how the next generation of spectrographs has surpassed what DEIMOS has been able to achieve. Faber discusses the famous optical flaw that threatened the viability of the Hubble Telescope and how this issue was resolved and the import of the CANDELS project. She explains the value of advanced computing for black hole quenching models, and she discusses her long-term collaboration with Chinese scientists and some of the political and international considerations inherent in these partnerships. Faber describes the origins of the Osterbrock Leadership Program and its value for fostering the careers of the next generation of scientists. At the end of the interview, Faber describes the meaning of “Cosmic Knowledge,” and she explains how this concept of humanity’s greater appreciation of our place in the universe can have ethically positive and long-lasting impacts beyond astronomy.

Interviewed by
David Zierler
Interview dates
June 7, 14, 21 & 28, 2020
Location
Video conference
Abstract

Interview with Rainer Weiss, professor emeritus of physics at MIT. Weiss recounts his family history in pre-war Europe and the circumstances of his parents' marriage. He describes his childhood in New York City, and he explains his interests in experimenting and tinkering from an early age. Weiss explains the circumstances leading to his undergraduate study at MIT and his original plan to study electrical engineering before focusing on physics. He recounts his long and deep relationship with Jerrold Zacharias, who singularly championed Weiss's interests over the years. He discusses his graduate work on the hyperfine structure of hydrogen fluoride. Weiss describes his formative work with Bob Dicke at Princeton, and he explains how technological advances was beginning to offer new advances in general relativity. He explains how Dicke's influence served as an intellectual underpinning for the creation and success of LIGO. Weiss emphasizes the importance of Richard Isaacson as one of the founding heroes of LIGO, and he describes the fundamental importance of joining his research institutionally with Caltech. He describes his early research with John Mather, and the numerous administrative challenges in working with the NSF throughout the LIGO endeavor. Weiss describes the geographical decisions that went into building LIGO, the various episodes when LIGO's ongoing viability was in doubt, and how both Barry Barish and Kip Thorne contributed to ensuring its success. At the end of the interview, Weiss describes some of the sensitivities regarding who has been recognized in LIGO and who has not, in light of all the attention conferred by the Nobel prize, and he reflects on how LIGO will continue to push discoveries forward on the nature and origins of the universe.