Supersymmetry

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Daniel R. Marlow, Evans Crawford Class of 1911 Professor of Physics, at Princeton University. Marlow recounts his childhood in Ontario and his father’s military appointment which brought his family to the United States when he was fourteen. He describes his undergraduate experience at Carnegie Mellon and the considerations that compelled him to remain for his graduate work in physics. Marlow describes his thesis research under the direction of Peter Barnes and his research visits to Los Alamos, Brookhaven, and JLab, and he surveys the theoretical advances that were relevant to his experimental work. He explains his decision to stay at CMU as a postdoctoral researcher and as an assistant professor, and he describes his interests which straddled the boundary between particle physics and nuclear physics. Marlow describes the opportunities leading to his faculty appointment at Princeton by way of the research in k+ and pi+nu nu-bar experiments at CERN. He discusses his involvement in planning for the SSC, and how the Gem collaboration was designed to find the Higgs and supersymmetry before the LHC. Marlow discusses the e787 experiment and the lesson gained that rare kaon decay experiments are more difficult than they appear at first glance. Marlow describes the origins of the Belle project in Japan at KEK and its relationship to BaBar, and he explains how finding the Higgs was the capstone to the Standard Model. He surveys the current state of play in experimental particle physics and why he encourages students to follow their interests without overly analyzing future trends in the field. At the end of the interview, Marlow describes his current interest in studying displaced vertices and long-lived particle searches, and he muses that toward the end of his career, he wants to become more of a “graduate student” so that he can focus more exclusively on the physics that is most compelling to him.

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, Elizabeth Simmons discusses: role as Executive Vice Chancellor (EVC) at UC San Diego; impact of COVID-19; current developments in the field that she finds exciting; family background and childhood; experiences as a woman in physics; M.Phil at Cambridge in Volker Heine’s group working on condensed matter theory; study of condensed matter theory at Harvard; Howard Georgi; work on models exploring electroweak symmetry breaking and quark masses; opinions on why SSC died and the impact on the field; collaboration with Cynthia Brossman on the Pathways K12 outreach project supporting girls’ involvement in STEM; research on the top quark; interest in supersymmetry and physics Beyond the Standard Model (BSM) using a Higgless model; papers with husband Sekhar Chivukula and others exploring the idea of a five-dimensional spacetime; leading Lyman Briggs College; MOOSE model; reaction to the discovery of the Higgs boson; post-Higgs work distinguishing which models can and can’t be consistent with the data; consulting work for the American Physical Society (APS) and the wider academic and scientific community on matters of equity, diversity, and inclusion (EDI); advocacy on behalf of the LGBTQ community; advisory work for the Center for High Energy Physics in China; collaborations at the Aspen Center for Physics to support EDI in the field; role creating career development workshops for women at the International Center for Theoretical Physics; work increasing EDI in curricula and faculty hiring; building cross-field collaboration at UCSD; collaboration with other EVCs in the UC system; current physics work on model building and how to get the most out of available data; and current work on graviton-graviton scattering. Toward the end of the interview, Simmons reflects on intersectionality and the value of diversity in science and discovery.

Interviewed by
David Zierler
Interview dates
February 15, March 29, May 12, 2021
Location
Video conference
Abstract

In this interview, Fabiola Gianotti, Director-General of CERN, reflects on being the first woman in this position and the multi-layered challenges of maintaining operations at CERN during the pandemic. She recounts her upbringing in Milan and the scientific influence of her father, who was a geologist. Gianotti describes her education at the University of Milan and her formative interactions with Carlo Rubbia at CERN. She describes her work on the LEP and ADELPH collaborations and how the cancellation of the SSC affected CERN. Gianotti narrates the origins of the LHC and parallel concentration on supersymmetry and she describes the ATLAS and CMS teams and her advisory work for P5 in the United States. She discusses her election and responsibilities as Spokesperson of ATLAS and she describes the careful process of detecting and analyzing the signals that confirmed the Higgs. Gianotti describes the unique opportunity to engage a global audience given the magnitude and interest in the discovery, and she explains LHC’s planning, post-Higgs, for new physics. She describes the shutdown period that started in 2013 and the circumstances to her being named Director-General in 2013. Gianotti surveys what has, and has not, been detected at the LHC over the past decade, and how dark matter searches at CERN are complementary to those using Xenon detectors. She conveys optimism about the high luminosity upgrade at the LHC and how she frequently operates in political realms given the international nature of CERN. At the end of the interview, Gianotti observes that current projects at the CERN are reminiscent of the buildup to the LHC, and why this bodes well for the future of experimental particle physics. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Glennys Farrar, professor at New York University, discusses her career and shifting interests within physics. She details her time as an undergraduate student at University of California, Berkeley. Farrar discusses how she chose to attend Princeton University for graduate school to further her interest in particle theory. She discusses her thesis research which calculated the rate of decay for The Lambda under the mentorship of her advisor Sam Treiman. She describes the social isolation she faced within the physics department as the only woman. Farrar discusses her time as a postdoc at Caltech and details her research on the pion decay constant, as well as pioneering the field of phenomenological supersymmetry. Additionally, she speaks on the sexism she experienced while at Caltech. She details her experience at Rutgers University where she worked on Hadron Physics. Farrar discusses her time at New York University as Chair of the Department of Physics and her efforts putting together a strong faculty. She also details her growing interest in cosmology at this time and describes founding the Center for Cosmology and Particle Physics. She also speaks about her work on the stellar tidal disruption phenomenon. Lastly, Farrar notes her excitement for the increase in computation power in the future and reflects on the merging of different fields of physics.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Raman Sundrum, distinguished university professor of physics at the University of Maryland. Sundrum recounts his childhood in India, Maryland, and Australia and he describes his life as the child of an international economist with the UN and the World Bank, and a pediatrician. He describes his undergraduate experience at Sydney University where he majored in physics and where he learned that his abilities were in theory. Sundrum discusses his time as a graduate student at Yale, where he was accepted to the math department, and he explains how he immediately shifted over to physics. He explains his initial difficulty settling on a research focus under the direction of Laurence Krauss before he developed a relationship with Mark Soldate and settled on thesis research on particle theory beyond the Standard Model. Sundrum discusses his postdoctoral work at Berkeley, where he spent time at the Lawrence Berkeley Laboratory. He describes being recruited by Howard Georgi to do postdoctoral work at Harvard, and he explains how he collaborated with Lisa Randall and how the Randall-Sundrum papers originated. Sundrum describes the impact of this collaboration on research in supersymmetry, and he explains the events leading to his tenure at Johns Hopkins. He explains how his research focus shifted to cosmology and he discusses his decision to switch to a faculty position at Maryland, where he became director of the Center for Fundamental Physics. At the end of the interview Sundrum explains his longstanding fascination with metaphysical ideas, and he reflects on the importance of developing intellectual maturity over the course of one’s career.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Michael Dine, Professor of Physics at the University of California at Santa Cruz. Dine conveys his provisional excitement over the g-2 muon anomaly experiment at Fermilab and he recounts his childhood in Cincinnati. Dine discusses his undergraduate education at Johns Hopkins, his developing interests in physics, and the opportunity that led to his graduate research at Yale. He describes working under the supervision of Tom Appelquist and trying to understand the force between heavy quarks within quantum chromodynamics. Dine describes his earliest exposure to string theory and his decision to take a postdoctoral appointment at SLAC, where he worked with Jonathan Saperstein on the next order calculation of the total electron-positron cross section. He discusses Lenny Susskind’s work on Technicolor and his subsequent appointment at the Institute for Advanced Study, his close collaboration with Willy Fischler, and the excitement surrounding supersymmetry at the time. Dine describes the impact made by Ed Witten when he arrived in Princeton and he discusses the origins of axion-dark matter research. He discusses his first faculty position at City College in New York and his reaction to the “string revolution” of 1984 and AdS/CFT a few years later. Dine explains his decision to move to UC Santa Cruz and his burgeoning interest in cosmology, he reflects on when his research focused to physics beyond the Standard Model, and he explains why it is possible to decouple the expectation that supersymmetry must be detected at the LHC. He explains why string theory is making strides toward experimental verifiability, and he reflects on the utility of being a theorist. At the end of the interview, Dine emphasizes his optimism about the axion as a dark matter candidate and why the field is moving steadily toward a greater understanding of physics at both the largest and smallest scales.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Daniel Z. Freedman, Professor Emeritus of Applied Mathematics and Physics at MIT and long-term visiting professor at Stanford. Freedman explains his understanding of the term’s mathematical physics and physical mathematics, and he bemoans the broad decoupling of experiment and theory in physics. He recounts his upbringing in West Hartford, Connecticut, and he describes his undergraduate education at Wesleyan. Freedman describes his early attachment to theory and his graduate work at the University of Wisconsin, where he worked under the direction of Ray Sawyer on Regge poles. He discusses his postdoctoral research as a NATO fellow in Europe at CERN and Imperial College London, and he conveys the sense of excitement at the time about the weak and strong interactions. Freedman describes his appointment at UC Berkeley before joining the Institute for Advanced Study, and he explains the opportunity that led to his faculty job at Stony Brook. He reflects on his interactions with Yang and he narrates the origins of supersymmetry, and shortly after, the origins of supergravity. Freedman explains what is “super” in supergravity, supersymmetry, and super-space, and he describes why the reality of supersymmetry must be true even if we lack the tools to see it. He explains his decision to move to MIT, and he connects the arc from the 1984 string revolution to the discovery of AdS/CFT in 1997. Freedman describes winning the Dirac medal and subsequently the Breakthrough Prize, which he understood as confirmation in the community about the importance of supergravity. At the end of the interview, Freedman connects his work to larger questions in cosmology and astrophysics, he expresses surprise by the increasing centrality of mathematics to physics, he explains his early work on neutrino scattering and why after 40 years, his original intuition has been vindicated.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Gerard 't Hooft, University Professor of Physics (Emeritus) at Utrecht University in the Netherlands. 't Hooft considers the possibility that the g-2 muon anomaly experiment at Fermilab is suggestive of new physics, and he reflects broadly on the current shortcomings in our understanding of quantum mechanics and general relativity. 't Hooft recounts his childhood in postwar Holland and the influence of his great uncle, the Nobel Prize winner Frits Zernike and his uncle, the theoretical physicist Nico van Kampen. He describes his undergraduate education at Utrecht University where he got to know Martinus Veltman, with whom he would pursue a graduate degree and ultimately share the Nobel Prize. 't Hooft explains the origins of what would become the Standard Model and the significance of Yang-Mills fields and Ken Wilson’s theory of renormalization. He describes Veltman’s pioneering use of computers to calculate algebraic manipulations and why questions of scaling were able to be raised for the first time. 't Hooft discusses his postdoctoral appointment at CERN, his ideas about grouping Feynman diagrams together, and how he became involved in quantum gravity research and Bose condensation. He explains the value in studying instantons for broader questions in QCD, the significance of Hawking’s work on the black hole information paradox, the holographic principle, and why he has diverged with string theorists. 't Hooft describes being present at the start of supersymmetry, and the growing “buzz” that culminated in winning the Nobel Prize. He describes his overall interest in the past twenty years in thinking more deeply about quantum mechanics and he places the foundational disagreement between Einstein and Bohr in historical context. At the end of the interview, 't Hooft surveys the limitations that prevent us from understanding how to merge quantum mechanics and general relativity and why this will require an understanding of how to relate the set of all integer numbers to phenomena of the universe.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Michael Green, Lucasian Professor Emeritus at Cambridge University and visiting professor at Queen Mary University. He recounts his childhood in London as the child of secular Jewish parents who immigrated to London just before World War II. Green discusses his early interests in physics and the opportunities that led to his enrollment at Cambridge, and he conveys Geoff Chew’s influence with his ideas on S-matrix and bootstrap theory, which informed his thesis research on hadronic interactions. He narrates the founding ideas that led to string theory and how the work on dual models became transformed into string theory. Green describes his postdoctoral work at the Institute for Advanced Study and his interactions with Veneziano. He explains his decision to return to Cambridge and the importance of the CERN theory group for his research, and he narrates the origins of his collaborations with John Schwarz. Green connects string theory to the ideas that led to supergravity, and he explains why he does not like the term “revolution” in relation to advances in string theory to explain what was happening between 1981-1984. He explains the meaning of the pronoun “super” in relation to string theory, and he conveys his disappointment that supersymmetry has yet to be observed. Green describes the importance of AdS/CFT and his contributions to the origins of D-branes with Joe Polchinski. He discusses his increasing reliance on computers for understanding aspects of AdS/CFT correspondence. Green reflects on winning the Breakthrough Prize, and the supposed aspirational recognition on working to unify the forces which are not yet unified, and he discusses the generational de-coupling of string theory education from particle physics. He provides sociological perspective in response to the impatience that certain physicists have expressed regarding string theory. At the end of the interview, Green ponders the future relationship between string theory and quantum computing, and he describes the field as an intellectual adventure which makes it difficult to predict the significance of these changes.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with John Ellis, Clerk Maxwell Professor of Theoretical Physics at King’s College London, and Visiting Scientist at CERN. Ellis discusses the g-2 experiment at Fermilab and where he sees current efforts geared toward understanding physics within the Standard Model, and pursuing new physics beyond it. He recounts his childhood in a small town north of London and his innate interest in physics before he understood that it was a proper field of study. Ellis discusses his education at Cambridge and the department’s strength in particle physics, general relativity, and cosmology, and he explains the relevance of the deep inelastic scattering research at SLAC for his thesis on approximate symmetries of hadrons. He describes the intellectual influence of Bruno Zumino and his decision to go to SLAC for his postdoctoral research to work on scale invariance. Ellis discusses his subsequent research at Caltech and he explains why he would have appreciated more the significance of asymptotic freedom had he better understood field theory at that point. He discusses his subsequent position at CERN and is collaboration with Mary Gaillard on semileptonic decays of charm. Ellis narrates the famous “penguin diagram” that he developed with Melissa Franklin and his interest in grand unification and how it differs from the so-called “theory of everything.” He describes the optimism in the 1980s that supersymmetry would be found and its possible utility in the search for dark matter. Ellis discusses his involvement with LEP and axion physics, and he reflects on the spirit of competition and collaboration between ATLAS and CMS in the run up to the Higgs discovery. He explains the new questions that became feasible as a result of the discovery and his interests in both gravitational waves and supernovae. Ellis describes the AION experiment, the important physics research currently in the works in China, and key recent developments in quantum gravity. At the end of the interview, Ellis conveys his belief in the importance of science communication, he minimizes the importance of the h-index as a measure of excellence, and in reflecting on his own career, he cautions against younger physicists becoming overly-specialized.