Supergravity

Interviewed by
Donald Salisbury and Dean Rickles
Interview date
Location
California Institute of Technology
Abstract

Interview with Stanley Deser, emeritus Ancell Professor of Physics at Brandeis and a senior research associate at California Institute of Technology. The interview begins with Deser and the interviewers reflecting on the origins of general relativity and the key players involved in the field. Deser describes his time at the Institute for Advanced Study and recalls sneaking in to see one of Einstein’s seminars. He reflects on his time at Harvard under Julian Schwinger and then his transition to the Institute to work with Oppenheimer. Deser also discusses his earlier life, escaping Poland to New York and studying under Melba Phillips at Brooklyn College. Other topics include the famous Bern Conference of ’57, the beginnings of his work in general relativity, and his collaborations with Charles Misner and Richard Arnowitt. Toward the end of the interview, Deser traces his thinking on quantum gravity over time and his ideas for where the field might go in the future.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Daniel Z. Freedman, Professor Emeritus of Applied Mathematics and Physics at MIT and long-term visiting professor at Stanford. Freedman explains his understanding of the term’s mathematical physics and physical mathematics, and he bemoans the broad decoupling of experiment and theory in physics. He recounts his upbringing in West Hartford, Connecticut, and he describes his undergraduate education at Wesleyan. Freedman describes his early attachment to theory and his graduate work at the University of Wisconsin, where he worked under the direction of Ray Sawyer on Regge poles. He discusses his postdoctoral research as a NATO fellow in Europe at CERN and Imperial College London, and he conveys the sense of excitement at the time about the weak and strong interactions. Freedman describes his appointment at UC Berkeley before joining the Institute for Advanced Study, and he explains the opportunity that led to his faculty job at Stony Brook. He reflects on his interactions with Yang and he narrates the origins of supersymmetry, and shortly after, the origins of supergravity. Freedman explains what is “super” in supergravity, supersymmetry, and super-space, and he describes why the reality of supersymmetry must be true even if we lack the tools to see it. He explains his decision to move to MIT, and he connects the arc from the 1984 string revolution to the discovery of AdS/CFT in 1997. Freedman describes winning the Dirac medal and subsequently the Breakthrough Prize, which he understood as confirmation in the community about the importance of supergravity. At the end of the interview, Freedman connects his work to larger questions in cosmology and astrophysics, he expresses surprise by the increasing centrality of mathematics to physics, he explains his early work on neutrino scattering and why after 40 years, his original intuition has been vindicated.

Interviewed by
David Zierler
Interview dates
July 30 and August 3, 2020
Location
Video conference
Abstract

Interview with Sylvester James Gates, Jr., Ford Foundation Professor of Physics and Director of the Theoretical Physics Center at Brown University. Gates discusses his preparations to lead the APS and the value of his service for PCAST for this new role. Gates recounts his family heritage and he discusses his father’s military service and the death of his mother. He explains how his family navigated racist challenges during his upbringing in El Paso and then in Orlando and how he navigated his own intellectual abilities in school. Gates explains his interest in physics in high school and the opportunities that led to his admission at MIT for his undergraduate work. He recounts the many mentors who made a positive impression on him and he explains his realization that his specialty would be at the boundary between math and physics. Gates describes his earliest interactions with string theory and he explains his decision to remain at MIT for his graduate work to work with Jim Young on supersymmetry. He paints a broader picture of supergravity research at this time and the rising importance of computers for this work. Gates describes his postdoctoral research at Harvard as a Junior Fellow, where he worked closely with Warren Siegel, and he describes his decision to join the faculty at MIT after a subsequent postdoctoral position at Caltech. He addresses Shelly Glashow’s criticism of string theory, and he explains his decision to leave MIT for a faculty position at the University of Maryland. Gates reflects on his teaching and mentoring career at Maryland, he describes his time at Howard University, and he discusses the broader issue of diversity in physics and AIP’s TEAM-UP Report. He describes his more recent interests in graph theory and the broader effort to unify gravity with the other forces. Gates reflects on how he became an advisor to President Obama for PCAST and how he worked with John Holdren to translate reports into policy changes. He explains his decision to go emeritus at Maryland and to take a new position at Brown, and why joining the Watson Institute was an attractive part of the offer. Gates reflects on assuming leadership at APS during the twin crises of Covid and racial strife, he surveys the state of string theory and high energy physics, and he explains why supersymmetry might offer a path to understanding dark matter. At the end of the interview, Jim conveys his hope that his work in math will yield deep insights into nature, and he considers the possibility of pursuing an autobiographical project.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Albert Schwarz, Distinguished Professor of Mathematics Emeritus at UC Davis. Schwarz discusses his current interests in pursuing a geometric approach to quantum theory, and he recounts his family origins in Russia and Eastern Europe and their travails under Stalin’s oppression. He describes his early interests in math and his education at the Ivanovo Pedagogical Institute under the guidance of Professor Efremovich, who guided him in the new field of geometric group theory. Schwarz discusses his graduate research at Moscow University, where he focused on the homology of the space of closed curves and on the topology of the space of Fredholm maps during his postgraduate work. He explains the impact of Polyakov’s and t’Hooft’s work on magnetic monopoles and gauge fields in the 1970s, and he describes his contributions to instanton research. Schwarz recounts his earliest exposure to string theory and his subsequent work on supergravity, and he explains the opportunities and considerations that allowed him to emigrate to the United States. He discusses his initial contacts with Ed Witten and his appointment at the Institute for Advanced Study and his job offer at Davis. Schwarz explains his interest in Batalin-Vilkovisky formalism and his appreciation of the value in relating non-commutative geometry to string theory and M-theory. He describes why a geometric approach to quantum theory de-emphasizes the differences between classical and quantum mechanics. At the end of the interview, Schwarz reflects on some of the life lessons he learned from the difficulties of his youth, how his background gives him a uniquely Russian approach to math and physics, and he explains a duality in string theory where it does not currently explain reality but that ultimately, the “right” physics will arise from it.

Interviewed by
David Zierler
Interview date
Location
video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Robert Finkelstein, (deceased in August 2020) formerly professor emeritus, department of physics, University of California, Los Angeles (UCLA). Finkelstein describes his early interests in physics and his undergraduate education at Dartmouth College, and he describes his formative summer at Columbia University, where he studied under I.I. Rabi. He discusses he graduate work at Harvard University under the direction of John van Vleck, and he discusses van Vleck’s fundamental contributions to quantum mechanics. Finkelstein describes his postdoctoral work expanding on Niels Bohr’s capacity to deal with magnetism, and he discusses his work with Francis Bitter at Massachusetts Institute of Technology (MIT). He describes his conscription to the Navy during World War II, where he worked on mine warfare, and he explains his close relationship with George Gamow and his work on tunneling in quantum mechanics and general relativity. Finkelstein discusses his postwar work at Fermilab, where he became interested in meson physics, and he describes his position at the Institute for Advanced Study at Princeton as a postdoctoral researcher under Robert Oppenheimer, where he continued to work on mesons. He describes getting to know at the Institute, he discusses his first contact with the Feynman diagrams, and he recounts how Jack Steinberger used his calculations which were in agreement with the diagrams. Finkelstein discusses his decision to join the faculty at UCLA, and he explains his opinion that Julian Schwinger was a “deeper” thinker than Feynman. He explains the originals of his unitary field theory, and he describes his contributions to the concept of supergravity. At the end of the interview, Finkelstein explains his ongoing interest with improving upon the Standard Model, and he reflects on the incredible level of understanding about the cosmos that has been developed over the course of his career.