McMaster University

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with James David Litster, Professor Emeritus at MIT. Litster recounts his childhood in Toronto, then Edmonton and back to Toronto for high school. He explains the importance of Sputnik both on his interests and for the support of science generally, and he describes his undergraduate education in engineering physics at McMaster University. Litster describes his graduate work at MIT, where he focused on experimental solid-state physics working under the direction of George Benedek. He explains his contributions to phase transition research, and he explains the opportunities leading to his postdoctoral research and faculty appointment at MIT. Litster describes his entrée into the world of liquid crystals and Landau theory working with de Gennes in Paris. He explains the origins of the joint MIT-Harvard Health Science and Technology program and he describes some of his scientific and administrative achievements at Vice President for Research at MIT and as a member of the MIT Nuclear Reactor Safeguards Committee. At the end of the interview, Litster reflects on some of the major advances that have been achieved in condensed matter physics over the course of his career, and how much more interdisciplinary science generally has become.

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Donna Strickland, professor of physics and astronomy at the University of Waterloo. Strickland describes the challenges of operating an experimental laser lab during the pandemic, and she recounts her childhood in Nova Scotia, her early interests in science, and her decision to pursue an engineering physics degree at McMaster. She discusses the early influence of Brian Garside and her immediate interest in CO2 lasers. Strickland describes her graduate research at the University of Rochester where she worked with Gérard Morou, whose lab was pursuing shorter laser pulses. She narrates the origins of the CPA laser idea and explains some of the technical challenges in designing the CPA system. Strickland discusses the opportunity to work at the NRC with Paul Corkum and then her subsequent position at Livermore before she joined a research group at Princeton. She describes securing her first full time faculty position at Waterloo and her interest in coherent control of molecules and why she enjoys two color lasers. Strickland describes her service work for the OSA, and she narrates how she never noticed the “buzz” leading up to the announcement that she won the Nobel Prize. She emphasizes the importance of Steve Williamson’s contributions to the CPA research and her post-Nobel work with the OSA on environmental measurement and modeling. At the end of the interview, Strickland emphasizes the importance of luck in her career, she reviews the broader applications of CPA lasers, and she conveys her interest in quantum entanglement which she hopes to pursue when her schedule allows.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with William "Bill" Unruh, Professor of Physics and Astronomy at the University of British Columbia, and Hagler Fellow at the Institute for Quantum Science and Engineering at Texas A&M. He credits his mentor John Wheeler for the steady progress of interest and work in general relativity over the decades, and he reflects broadly on the original debates among the relativists and the founders of quantum mechanics. Unruh explains the inability to merge these foundations of physics as the source of his attempts to understand the black hole evaporation as found by Hawking. He recounts his upbringing in Manitoba as part of a Mennonite community and his early interests in Euclidean geometry, and he describes his undergraduate education at the University of Manitoba. Unruh explains his decision to pursue a PhD with Wheeler at Princeton on topology and general relativity, and scattering cross sections of black holes to scalar fields. He describes his postgraduate appointment at Birkbeck College where he worked with Roger Penrose and he narrates the origins of his collaboration with Stephen Fulling and Paul Davies. Unruh discusses his time at Berkeley and then at McMaster and he historicizes the point at which observations made black holes more "real," and he explains his first involvement with decoherence. He explains his involvement with LIGO from its origins and its quantum mechanical nature, and he narrates his reaction of amazement when gravitational waves were detected. Unruh describes the impact of his work in quantum mechanics on computation, and he explains some of the advances that have made observation more relevant to his recent research. At the end of the interview, Unruh describes his efforts to launch a Gravity Archive at UBC, he expresses his frustration with people who insist we do not know quantum mechanics, and he quotes Wheeler, quoting his favorite Grook to convey that he is having fun and wants to learn as much as he can, while he can.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Robert C. Dynes, Research Professor, Emeritus President of the University of California, and Emeritus Chancellor of UC San Diego. Dynes recounts his childhood in Ontario, his early interests in science, and his decision to attend the University of Western Ontario for college. He explains his decision to pursue a PhD at McMaster University, and he describes some of the advances in superconductivity that were exciting at that time. Dynes discusses his postdoctoral research at Bell Labs and he emphasizes that the research culture was geared exclusively to basic science and had nothing to do with financial considerations toward Bell’s business. He describes his political engagement during the Vietnam Era and he describes the changing culture at Bell during the breakup in the 1980s when he was Director of Chemical Physics. Dynes discusses his research on thin films of metals at the atomic level, and he explains the circumstances leading to his tenure at UC San Diego. He explains how the university was building up across the sciences, and he conveys how important teaching was to him. Dynes describes the process leading to being named Chancellor, and he reviews his challenges and accomplishments in this role. He compares the Chancellor’s responsibilities to those of the UC President, to which he was named in 2003, and he describes his efforts to remain active in research even as he was running the entire UC system. Dynes describes the existential challenge of being president at a time that the state was defunding public education, and he describes some of his key successes in faculty recruitment. He conveys his delight when his term as president ended and he was able to return to the physics department in San Diego. At the end of the interview Dynes cites integrity and creativity as the characteristics that he sees as most fundamental to success in science.

 

Interviewed by
David Zierler
Interview date
Location
video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Cliff Will, Distinguished Professor of Physics at the University of Florida. He recounts his childhood in Ontario, Canada, and explains his decision to enroll at McMaster University, which was both nearby and offered an excellent physics program. He describes his studies with Bertram Brockhouse and how he developed his skills and interests in theory. Will explains his early impressions of Caltech, and how different California felt in the late 1960s. He describes his graduate research in general relativity under the direction of Kip Thorne, and he explains the significance of his calculation of the n-body equations of motion, which was the first post-Newtonian approximation of general relativity. Will explains the import of recent experimental advances in general relativity and how this advanced theoretical work. He describes his postdoctoral research at the Fermi Institute and his attraction at the concept of working with Chandrasekhar. He explains his decision to join the faculty at Stanford, and the state of the field in general relativity and gravitational radiation in the early 1970s. Will describes the circumstances leading to his work at Washington University and the research he did at the McDonnell Center for Space Sciences. He discusses his service work for the National Research Council and his advisory position on the Stanford-NASA space mission called Gravity Probe-B. Will describes his interest in conveying scientific concepts to the broader public, and the excitement he felt in joining the LIGO collaboration. He discusses his recent research interests at the University of Florida and his ongoing collaborations in France. At the end of the interview, Will reflects on what has been confirmed and improved in the field of general relativity since the time of Einstein.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Hamish Robertson, Boeing Distinguished Professor of Physics Emeritus at the University of Washington. Robertson recounts his childhood in Hamilton, Canada and his experiences as an undergraduate at Oxford University and his early interest in working at Los Alamos Lab. He describes his decision to pursue graduate work at McMaster University, which had just built the first nuclear reactor on a college campus in Canada, and his intent to focus on atomic beam physics. Robertson explains his post-doctoral research at Michigan State and his shift from nuclear structure physics to neutrino physics and his formative sabbatical year at Princeton and his tenure at Los Alamos, where he worked on neutrino mass. He describes his views on the standard model, and the recruitment process that led to his decision to join the faculty at UW, where he helped to create a laboratory to continue research on neutrinos. Robertson talks about the major influence of John Bahcall, and he describes the issues in physics research that remain compelling to him.