Condensed matter

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Yuhua Duan discusses: his role at the National Energy Technology Laboratory (NETL) under the US Department of Energy (DoE); childhood poverty in the Chinese countryside; experience as an undergraduate in 1980s China; master’s degree in chemical physics at the University of Science and Technology (UST) in China; PhD in condensed matter physics; mentorship with T.S. Kê at UST; postdoc studying surface physics at Fudan University under Xide Xie; time at Basel University in the Institute of Physical Chemistry; research associate position at University of Minnesota (U of M) School of Physics and Astronomy under Woods Halley, modeling on the polymer electrolyte for battery applications; switch to Chemical Engineering and Materials Science Department to focus on protein-protein interaction; decision to stay in the US and apply for citizenship; joining the NETL team; research simulating the microwave sintering by finite element approach; work on CO2 capture to fight climate change; discussion of CO2 storage and use; work developing sensor materials that function under extreme conditions; discussion of quantum information science in the energy sector and quantum sensor research; tritium production research; using a supercomputer for his work, discussions of capabilities of the quantum computer; and the impact of political administration changes on work focus at NETL. Toward the end of the interview, Duan reflects on NETL’s contributions to research on controlling carbon emissions and mitigating climate change.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Matthew Fisher, professor of physics at UC Santa Barbara. Fisher recounts his early childhood in London as the son of a prominent physicist, and his upbringing in Ithaca where his father was on the physics faculty. He discusses his undergraduate experience at Cornell, where he started in engineering but gravitated toward physics, and he reflects on a conversation with a graduate student, which – more than any influene from his father or his brother, also a prominent physicist – sparked his interest. Fisher describes his initial graduate work at MIT, where he focused on experimental condensed matter research in the lab of Bob Birgeneau, before he transferred to the University of Illinois at Champaign-Urbana to re-focus on condensed matter theory, with a special interest in quantum mechanics under the direction of Tony Leggett. He explains the mental health issues he began to suffer from in graduate school, which extended into his postdoctoral, and then full time, work at IBM, until a psychiatrist prescribed him medication that essentially restored him to a state of mental health. Fisher describes the opportunities leading to his faculty appointment at UC Santa Barbara, and he discusses his newfound interests in high temperature superconductors, the fractional quantum Hall effect, and the localization of bosons. He discusses his ongoing interest in quantum mechanics, quantum spin liquids and quantum phase transitions, and he describes his long term collaboration with Charlie Kane. Fisher explains the singular advances Phil Anderson made to the field, and what supercomputing has allowed in the last twenty years that was not possible in the previous twenty years. He connects his mental health challenges with his recent interests in the concept of a quantum mind, or the possibility that the brain operates quantum mechanically. Fisher stresses that the field is nascent and that it is too early to tell if his preliminary ideas will be substantiated, and why a greater understanding of both evolution and the nature of consciousness is crucial to developing of this path of inquiry. He explains the implications of the notion of free will if the brain operates according to quantum processes, and he describes how this research may bear out experimentally. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Cherry Murray, Professor of Physics and Deputy Director of Research at Biosphere 2 at the University of Arizona. She describes some of the logistical challenges in managing Biosphere 2 during the pandemic, and she considers how current political and environmental crises perhaps make the research at Biosphere 2 all the more urgently needed. Murray reflects on how her work at the DOE has been an asset for Biosphere 2 and she recounts her early childhood, first in Japan and then Pakistan during her father’s postings for the Foreign Service. She describes her high school education in Virginia and then South Korea and the opportunities that led to her undergraduate admission at MIT, where she became close with Millie Dresselhaus. Murray explains her decision to remain at MIT for graduate work to conduct research in surface physics under the direction of Tom Greytak. She discusses her subsequent work at Bell Labs on negative positron work functions and where she rose to become Vice President, and she provides context for some of the exciting developments in superconductivity. Murray explains the circumstances and impact of the breakup of Bell Labs, and she reflects on her contributions on surface enhanced Raman scattering during her tenure. She discusses her work with Ernest Moniz, the circumstances of her being named Deputy Director for Science and Technology at Livermore Lab, she describes her tenure at Harvard and the development of the Division of Engineering and Applied Sciences, and her experiences as Commissioner of the BP Deepwater Horizon Oil Spill. At the end of the interview, Murray discusses the development of Biosphere 2, some of its early stumbles, and the vast research value it promises for the long term.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Sabyasachi Bhattacharya, Director of The Chatterjee Group - Centers of Research in Education, Science, and Technology, discusses his time working in the United States and India. He discusses his time at Northwestern University as an advisee of John Ketterson and his work with liquid crystals. He also speaks about the interplay between experiment and theory. Bhattacharya details his time as a James Franck Fellow at the University of Chicago and his collaboration with Sid Nagel on the glass transition of glycerol. He speaks about his experience working on charge density waves at Exxon, as well as his discovery of the pseudo-gap phase while there. He discusses working at NEC with vortex phases in type-II superconductors. Bhattacharya reflects on the joy he found teaching physics to undergraduate students. He details his time working at Ashoka University where he was allowed the opportunity to create an undergraduate education framework and build a physics department. Lastly, Bhattacharya discusses the importance of incorporating science into culture.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Steven Kivelson, Prabhu Goel Family Professor of Physics at Stanford University. Kivelson recounts his childhood in Los Angeles as the son of academic scientists, and he describes his transition from career ambitions in the law toward physics. He discusses his undergraduate experience at Harvard, and he describes his lack of appreciation of the stature of many of the physics professors, such as his advisor Paul Martin, whom he knew first as a friend of his parents. Kivelson explains his decision to continue at Harvard for his graduate degree, and he discusses how he developed his interest in amorphous semiconductors under the guidance of Dan Gellat. He recounts his postdoctoral work at UC Santa Barbara, where he worked with Bob Schrieffer on the physics of conducting polymers. Kivelson discusses his first faculty position at Stony Brook, and he discusses the excellent group of graduate students he advised during his tenure there. He discusses some of the broader research questions in condensed matter of the time, including the significance of macroscopic quantum tunneling, invented by Tony Leggett. Kivelson explains his reasons for moving to UCLA, and he discusses Ray Orbach’s efforts to make recruitment a priority there. He discusses his long interest in fractionalization with regard to conducting polymers to be generalized to spin liquids, and his move to Stanford, which attracted him in part because of the condensed matter experimental group. At the end of the interview, Kivelson discusses his current research interests in exploring well-controlled solutions of paradigmatic models of strongly correlated electron systems, and he explains why the concept of a grand unified theory of physics is not a scientific but rather a religious proposition.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Renata Wentzcovitch, professor of Applied Physics and Applied Mathematics and Earth and Environmental Sciences at Columbia University. Wentzcovitch recounts her childhood in Brazil, and she describes how her grandfather sparked her interest in science early on. She describes her education at the University of São Paulo’s Institute of Physics where she developed an interest in density functional theory. Wentzcovitch discusses her interest in pursuing a graduate degree in the United States, and her decision to attend UC Berkeley and study under the direction of Marvin Cohen. She describes her thesis research on pseudopotential plane-wave codes and super-hard materials such as boron nitride and diamonds. Wentzcovitch explains the impact of High Tc Superconductivity on both her career and the field generally, and she describes her postdoctoral research with joint appointments at Brookhaven and Stony Brook on evolving electronic wavefunctions via classical dynamics. She discusses her subsequent work with Volker Henie at Cambridge to study silicate perovskite, which in turn led to her first faculty appointment at the University of Minnesota. Wentzcovitch describes the importance of Minnesota’s Supercomputing Institute for her research, and she explains how her research focused more centrally on geophysics and the thermo-elasticity of minerals and their aggregates. She describes the founding of the Virtual Laboratory for Earth and Planetary Materials and explains her decision to join the faculty at Columbia and her involvement with VLab and the study of exchange-correlation functionals to address electronic interactions. At the end of the interview, Wentzcovitch discusses her current work on developing codes for thermodynamic computations and seismic tomography, and she conveys the value of pursuing international collaborations to fit her broad and diverse research agenda.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Sunil Sinha, Distinguished Professor Emeritus in the Department of Physics at the University of California, San Diego. Sinha describes how he has been able to keep up his research during the COVID pandemic, and he recounts his childhood in Calcutta where he attended Catholic schools and developed his interests in math and science. He describes his undergraduate education at Cambridge where he became interested is quantum mechanics, and he explains his decision to remain there for graduate work to conduct research on neutron scattering under the direction of Gordon Squires. Sinha explains the centrality of neutron scattering to the development of condensed matter physics, and he describes the opportunities leading to his postdoctoral research at Iowa State. He discusses his work at Ames Lab and Argonne Lab, where he continued to pursue fundamental research on neutron scattering and rare earth materials. Sinha describes his research at Exxon Lab, and the start of the revolution in soft matter physics, and he explains his decision to return to Argonne at the beginning of the Advanced Photon Source project. He discusses his subsequent move to San Diego where he enjoyed a joint appointment with Los Alamos Lab and when he was able to concentrate more fully on teaching after a career spent mostly in laboratory environments. At the end of the interview, Sinha describes his current interest in spin glasses, exchange biases, and jamming theoretical computer simulations, and he explains the reason for the enduring mystery of the mechanism for high-temperature superconductivity. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Lu Sham, Distinguished Professor of Physics Emeritus, University of California at San Diego. Sham recounts his childhood in Hong Kong and he describes the legacy of Japanese rule from World War II. He describes his early interests in math and he explains his decision to pursue a higher education in England at Imperial College. Sham discusses his motivation to conduct graduate work at Cambridge University and to study under Nevill Mott on the first principle method calculating the electron contribution to lattice vibration. He describes the help provided by John Ziman to secure his postdoctoral position at UC San Diego to work with Walter Kohn, and he describes the foundational collaboration and research that went into the Kohn-Sham equation and how this work builds on the classic debate between Einstein and Bohr. He describes the opportunities leading to his faculty appointment and eventual tenure on the physics faculty, and he explains the benefits of spending summers doing research at Bell Labs. Sham discusses his contributions to research on semiconductors, quantum computing, and density-functional theory. He describes his more recent interest in optics and the formative work he has done with graduate students and postdoctoral researchers over the years. Sham discusses his administrative service as department chair and Dean of Science. At the end of the interview, Sham asserts that the future of condensed matter physics holds limitless possibilities, and that improvements in semiconductor materials will push quantum information abilities in exciting and unforeseen directions.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Nai Phuan Ong, professor of physics at Princeton University. Ong describes how he has managed to keep his lab running during the coronavirus pandemic thanks to remote data analysis. He recounts his childhood in Malaysia in a family of ethnic Chinese who had businesses in Penang, and he describes his Catholic schooling and how he became interested in science as a young boy. Ong describes the opportunities leading to his undergraduate education at Columbia, where he pursued a degree in physics. He explains his decision to enroll at Berkeley for graduate school, where he studied under the direction of Alan Portis and worked on developing a microwave technique to perform measurements of the Hall effect without making Hall contacts to the sample. Ong recounts his offer from the University of Southern California to join the physics department first as a postdoctoral researcher and then as a member of the faculty. He explains his decision to move to Princeton and describes some of the difficulties given what he saw as a low point for condensed matter physics in the physics department at Princeton at that time. Ong describes the significance of the prediction and discovery of superfluid helium-3, and he discusses how Phil Anderson introduced him to high-Tc superconductivity. He discusses his research on representing the weak field Hall effect in a geometric fashion, he explains why the cuprate Hall effect remains mysterious, and he describes his more recent work on quantum spin liquids and the Nernst effect. Ong describes the excitement surrounding research in novel ground states of Dirac electrons in graphene, and what the achievement of topological quantum computers would mean for his research. At the end of the interview, Ong explains why graduate students are among the rarest and most precious resources in science, and why he hopes to concentrate on the Karplus-Luttinger theory in the future.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Michael Kosterlitz, Harrison E. Farnsworth Professor of Physics at Brown University. He recounts his family background in Germany and his upbringing in Aberdeen, Scotland, and he explains that opportunities that led to his undergraduate admission at Cambridge University where he developed his life-long passion for rock climbing. He describes his early interest in high-energy physics and his decision to pursue a graduate degree at Oxford where he worked on the Veneziano and dual resonance models under the direction of John Taylor. Kosterlitz discusses his postdoctoral work first in Torino and then at Birmingham where he met David Thouless and where he developed his initial interest in condensed matter and his subsequent expertise in phase transitions and superfluidity. He explains the revolutionary advances of Ken Wilson’s renormalization group and his decision to go Cornell where he enjoyed a foundational collaboration with David Nelson and Michael Fisher on crossover problems in critical phenomena. Kosterlitz discusses his decision to join the faculty at Brown, and he provides an overview in the advances in superfluidity in the 1970s and 1980s. He discusses the research that was eventually recognized by the Nobel prize committee and the experiments that bore out the theoretical predictions which were an essential prerequisite to the award. Kosterlitz describes the many benefits conferred as a result of winning the Nobel, and he provides perspective on how he has coped with his diagnosis of multiple sclerosis over the years. At the end of the interview, Kosterlitz explains his reluctance to prognosticate on future trends in the field because his experiences have proved to him that one can never know such things and that research breakthroughs are often unforeseen.