Interview with Lynwood Randolph, physicist and former space program administrator at NASA. Randolph recounts his childhood in a segregated Richmond and remembers his love for music as well as his introduction to physics in high school. He explains his decision to attend Virginia State University, where he participated in the ROTC program and served in the military upon graduation. After his service, Randolph decided to pursue graduate school and received a National Defense Education Act fellowship to attend Howard University. He explains his focus on experimental work during his graduate studies, pertaining to radiation effects and optical properties of materials. Randolph began a summer job at Harry Diamond Laboratories in DC, where he went on to work for 10 years. Randolph discusses the limitations in the types of jobs available to African Americans at the time, and explains the opportunity at NASA that led him to spend 23 years there. He served in many roles such as Manager for Advanced Concepts in the office of Aeronautics and Space Technology, Chief of the Management Programs Branch, and, later, Information Technology Standards Manager. Randolph reflects on the diversity within NASA over the years and how technology innovations impacted the workplace landscape. He discusses his work with HBCUs and his creation of LES Associates, a consulting company that works in a variety of educational and technological areas. Randolph concludes the interview with reflections on the importance of mentorship and diversity within the field.
Interview with Demetrius Venable, Professor Emeritus at Howard University. Venable discusses the administrative distinctions between physics and astronomy at Howard, and he surveys some of the most interest projects currently in train at NASA. He recounts his upbringing in segregated small-town Virginia, the educational limitations this imposed, and his service in ROTC at Virginia State University. He discusses a formative intensive summer program at Columbia, and he describes the opportunities that led to his graduate admission at American University to work with Richard Kay on the effectiveness of circular polarization versus linear polarization in excited states in solid material. Venable describes his postdoctoral research at IBM, then taking a faculty position at St. Paul’s College, before taking a longer-term position at Hampton Institute. He discusses his early involvement with NASA’s remote sensing program, he describes his tenure as director of the dual degree engineering program and the collaborative opportunities he was able to pursue with Jefferson Lab. Venable recounts his increasing administrative responsibilities leading to becoming Provost at Hampton, and he discusses the growth of the NASA-supported Center for Optical Physics. He explains his decision to move to Howard, where he could be more fully involved in research for CSTEA and the LiDAR system, and his partnership with NOAA on climate modeling. Venable conveys his enjoyment at receiving NASA’s Distinguished Public Service Medal, and he provides historical perspective on current and past calls to make STEM more diverse and inclusive. At the end of the interview, Venable explains his deep interest in physics education, and he expresses optimism in the long-term strength of Howard’s physics program.
In this interview, David Zierler, Oral Historian for AIP, interviews Sean L. Jones, Assistant Director for the Directorate for Mathematical and Physical Sciences at the National Science Foundation. Jones recounts his father’s scientific career at IBM and his own childhood in South Carolina, and the opportunities he had to pursue his interests in math and science. He discusses his undergraduate work in ceramic engineering at Clemson and the opportunities for him to become a McKnight Fellow at the University of Florida for graduate school, where he worked on increasing the luminescence of thin film phosphorous. He describes his postgraduate work at Bell Labs and how the internet bubble affected him at the turn of the century. Jones discusses his subsequent work as a professor of optical engineering at Norfolk State University and the enjoyment he derived in teaching at an HBCU. He explains why meeting Bruce Kramer at NSF was so formative and why he chose to join NSF as a program director after working at Applied Plasmonics. Jones describes the flatness of the NSF’s organizational structure and how the Obama administration’s commitment to science and technology research resonated for his program. He discusses his work at the OSTP in the Executive Branch and his tenure as Executive Secretary of the National Science Board. Jones discusses his increasing responsibilities at NSF and the overall improvement of the budgetary environment since he started. He talks about the current opportunities to expand diversity in STEM and his current work in managing research support as costs continually rise. At the end of the interview, Jones explains why the appetite for taking risk must be central to the future of good scientific policy at the national level.
Interview with Sylvester James Gates, Jr., Ford Foundation Professor of Physics and Director of the Theoretical Physics Center at Brown University. Gates discusses his preparations to lead the APS and the value of his service for PCAST for this new role. Gates recounts his family heritage and he discusses his father’s military service and the death of his mother. He explains how his family navigated racist challenges during his upbringing in El Paso and then in Orlando and how he navigated his own intellectual abilities in school. Gates explains his interest in physics in high school and the opportunities that led to his admission at MIT for his undergraduate work. He recounts the many mentors who made a positive impression on him and he explains his realization that his specialty would be at the boundary between math and physics. Gates describes his earliest interactions with string theory and he explains his decision to remain at MIT for his graduate work to work with Jim Young on supersymmetry. He paints a broader picture of supergravity research at this time and the rising importance of computers for this work. Gates describes his postdoctoral research at Harvard as a Junior Fellow, where he worked closely with Warren Siegel, and he describes his decision to join the faculty at MIT after a subsequent postdoctoral position at Caltech. He addresses Shelly Glashow’s criticism of string theory, and he explains his decision to leave MIT for a faculty position at the University of Maryland. Gates reflects on his teaching and mentoring career at Maryland, he describes his time at Howard University, and he discusses the broader issue of diversity in physics and AIP’s TEAM-UP Report. He describes his more recent interests in graph theory and the broader effort to unify gravity with the other forces. Gates reflects on how he became an advisor to President Obama for PCAST and how he worked with John Holdren to translate reports into policy changes. He explains his decision to go emeritus at Maryland and to take a new position at Brown, and why joining the Watson Institute was an attractive part of the offer. Gates reflects on assuming leadership at APS during the twin crises of Covid and racial strife, he surveys the state of string theory and high energy physics, and he explains why supersymmetry might offer a path to understanding dark matter. At the end of the interview, Jim conveys his hope that his work in math will yield deep insights into nature, and he considers the possibility of pursuing an autobiographical project.
In this interview, David Zierler, Oral Historian for AIP, interviews Stephen McGuire, James and Ruth Smith Endowed Professor of Physics, Emeritus, at Southern University and A&M College. McGuire recounts his family’s heritage in Louisiana and his upbringing in New Orleans, which was completely segregated during his childhood. He describes his early interests in physics and how NASA and the space race captured his boyhood imagination. McGuire describes his undergraduate education at Southern, where he was given a full scholarship and where he pursued a degree in physics. He explains his decision to enter graduate school at the University of Rochester where he focused on experimental nuclear physics and was supported by the NSF on the Nuclear Structure Research Laboratory. He discusses the import of the Cold War on nuclear physics during his graduate school years, and his work with the Fulbright Group, named after Harry Fulbright, who worked on the Manhattan Project. McGuire explains his decision to transfer from Rochester to the Applied and Engineering Physics Program at Cornell for his Ph.D. and where he studied under David Delano Clark, who was the director of the Ward Laboratory of Nuclear Engineering. He discusses his postdoctoral work at the Oak Ridge National Laboratory where he joined the High Flux Isotope Reactor group, and his subsequent work as a professor at Alabama A&M. He describes the satisfaction he felt teaching at a Historically Black University and how the proximity to the George C. Marshall Space Flight Center led to his collaborative work with NASA. McGuire explains his decision to move back to Cornell where he had a joint appointment in the nuclear reactor laboratory and the physics department. He discusses his subsequent move to Southern, where he became chair of the physics department, and he explains the origins of LIGO’s Observatory in Louisiana. McGuire explains Southern’s contributions to the LIGO collaboration, his specific research on reducing noise in the test mass mirror substrates and coatings, and he provides an overview of how the project has changed over his twenty years of involvement, and what we know about the universe as a result of LIGO. At the end of the interview, McGuire reflects on his efforts to make physics and STEM more inclusive of under-represented groups and why optimism in the future has and continues to serve him well as a citizen and as a scientist.
In this interview, Joanna Behrman, Assistant Public Historian for AIP, interviews Marta Dark McNeese, Associate Professor of Physics at Spelman College. McNeese recounts her childhood in Maryland and early interest in science. She describes her decision to attend the University of Virginia and to major in physics. McNeese discusses the climate she experienced during graduate school at MIT and her support network. She further elaborates on her graduate research with Michael Feld on the ablation of biological materials by lasers. She describes work as a postdoc at the Naval Research Lab and how she was drawn to join Spelman College. McNeese recounts how Etta Falconer was instrumental in growing the physics department at Spelman. McNeese discusses mentoring students at the undergraduate level and the importance of women’s colleges and HBCUs. At the end of the interview, she describes the development of her research in biophysics and her involvement with APS and NSBP.