Quantum computing

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with John Martinis, professor of physics at UC Santa Barbara. Martinis gave the interview from Australia, where he was consulting for Silicon Computing following his affiliation with Google’s efforts to build a quantum computer. He surveys the current state of play toward that goal, and explains what applications quantum computing can serve, and how the field is clarifying the technological requirements to achieve a quantum computer. Martinis recounts his childhood in Los Angeles, his early interests in computers, and his undergraduate experience at Berkeley where he gravitated toward experimental physics. He describes his interactions with John Clarke and his motivations to stay at Berkeley for graduate school, where he focused on SQUIDS and was captivated by Tony Leggett’s ideas on quantum tunneling. Martinis explains his interest in working with Michel Devoret at Saclay for his postdoctoral research, where there was much excitement over high Tc and YBCO materials. He describes his subsequent work at NIST and his decision to join the faculty at Santa Barbara around the time he became focused on quantum computing. Martinis narrates the technological challenges of building qubits and error correction, and he explains how he got involved with Google and joined his style with its research culture. He describes his role as chief scientist in the collaboration and why his vision and Google’s diverged. Martinis addresses the issue of “hype” in quantum computing. At the end of the interview, Martinis emphasizes the centrality of systems engineering to his research agenda, and he explains why quantum supremacy will demonstrate the need for quantum computing and the limitations of classical computing.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Elaine Oran, Professor of Aerospace Engineering and O’Donnell Foundation Chair at Texas A&M. Oran describes her core interest in fluid dynamics and why aerospace engineering provides an ideal home department for her research. She recounts her childhood in Philadelphia, her early interests in science, and her undergraduate experience at Bryn Mawr. She explains her decision to attend Yale for her graduate work in physics, where she focused on phase transitions, and she explains the opportunities that led to her work at the Naval Research Laboratory. Oran describes her research in laser-matter interactions and the value of the Laboratory for Computational Physics. She discusses her early interests in reactive flows and how this field became broadly applicable across the sciences. Oran describes being in Washington on 9/11 and her involvement in studying the explosions. She discusses her decision to join the faculty at the University of Maryland and her research in fire whirls and she explains her subsequent move to A&M where she was attracted by the interdisciplinary research opportunities. Oran describes her work in numerical simulations and the interplay between theory and experiment in her research. At the end of the interview, Oran emphasizes the importance of spontaneity and an openness to pursue science in unexpected directions.

Interviewed by
David Zierler
Interview dates
March 18 and April 17, 2021
Location
Video conference
Abstract

Interview with Stephen Wolfram, Founder and CEO of Wolfram Research. He describes his recent efforts to launch an “assault” on the final theory of physics and he muses on the possibility that the human mind is a quantum mechanical system. Wolfram recounts his family’s German-Jewish heritage and his upbringing in Oxford, where his mother was an academic. He describes his schooling which put him on a trajectory to skip grades and begin college at age fifteen and to complete his PhD at age twenty. Wolfram discusses his early interests in particle theory and computer systems and he describes his summer research visit to Argonne Lab and his visit with David Gross at Princeton. He explains the circumstances that led to his admission at Caltech to work on QCD and his decision to accept a faculty appointment at Caltech thereafter. Wolfram narrates the origins of the SMP program and the intellectual property issues he experienced as a Caltech professor. He explains his intellectual migration away from physics toward the work that would become Mathematica and Wolfram Language, and he describes his time at the Institute for Advanced Study. Wolfram discusses the business model he adopted for Mathematica and his educational motivations that were incorporated into the program from its inception. He discusses his interests in complex system research and his fascination with cellular automata, and he narrates the intellectual process that led to his book A New Kind of Science. Wolfram surveys the reviews, positive and negative, that he has received for this work, and he offers a retrospective look at how NKS has held up as it approaches its twentieth anniversary. He describes the launch of Wolfram Alpha and the promises and limits of quantum computing and why he has returned to physics in recent years. At the end of the interview, Wolfram asserts that he has never taken risk in any of his decisions, and he considers how his approach and the intellectual and business ventures he has pursued will continue to yield solutions for many of the ongoing and seemingly intractable problems in physics.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with John Hawley, John D. Hamilton Professor of Astronomy, and Senior Associate Dean for Academic Affairs in the College of Arts and Sciences at the University of Virginia. Hawley discusses his responsibilities as Associate Dean and he conveys his ongoing interest in black hole observational work and in the future findings of the James Webb Telescope. He reflects on his career’s overlap with the rise of computational astrophysics and he explains why he is agnostic on the hypothetical value of quantum computing to the field. He recounts his childhood in Maryland, then Kansas, and then northern California, in support of his father’s work as a minister, and he describes his undergraduate education at Haverford where he developed his interest in astronomy. Hawley explains his decision to work with Larry Smarr as his advisor at the University of Illinois, and he describes the origins of the Supercomputing Center. He describes the opportunities that led to him to Caltech to work with Roger Blandford, who was working on jets and active galaxies, and where he pursued synergies between analytic and computational analyses of black hole research. Hawley emphasizes the proximity to NRAO that influenced his decision to accept an offer from UVA, and he discusses his foundational collaboration with Steven Balbus on accretion disks. He explains his motivation to write the textbook Foundations of Modern Cosmology, what it was like to win the Shaw Prize, and how his administrative responsibilities gradually and mostly overtook his research agenda. At the end of the interview, Hawley reflects on the complementary nature of his technical collaboration with Balbus, and why he thinks terms of numerical and analytical approaches as separate endeavors.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews David Wineland, Philip H. Knight Distinguished Research Chair at the University of Oregon. Wineland recounts his childhood in Denver and then Sacramento, and he describes his early interests in math and engineering. He discusses his undergraduate education at University of California Davis and then Berkeley, where Frederick Byron played a formative role in his development as a scientist, and whom he followed to Harvard for graduate school. Wineland discusses working in Norman Ramsey’s lab, and the significance of Dan Kleppner’s demonstration of the hydrogen maser. He discusses his postdoctoral research at the University of Washington where he worked with Hans Dehmelt on making accurate measurements of the electron g-factor, and the opportunities that led to his career at NIST in Boulder. He describes the excellent research environment and instrumentation that made precision measurements for clocks feasible and the important of Shor’s algorithm for his work. Wineland explains the difference of accuracy and precision as those words apply to atomic clocks, and the societal benefits of achievement improvements in this field both for land- and space-based applications. He describes the day he learned that he would receive the Nobel Prize, the collaboration he enjoyed with Serge Haroche, and his post-Nobel work in quantum information. Wineland describes his reasons for moving to the University of Oregon. At the end of the interview, Wineland assesses the current and future prospects of true quantum computing and the societal benefits that this advance could confer, and ongoing developments that can further improve atomic clocks.