Astrophysics

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with interviews Michael Oppenheimer, Professor of Geosciences and International Affairs and the High Meadows Environmental Institute at Princeton University. Oppenheimer describes the three-way nature of his work at Princeton, between the School of Public and International Affairs and the Science, Technology, and Environmental Policy program. He describes the possibilities for climate change policy in the transition from Presidents Trump to Biden, and he discusses the moral dimension to climate change diplomacy and what the “Global North” owes the “Global South.” Oppenheimer recounts his childhood in Queens, the opportunities that allowed him to enroll at MIT at age 16, and his decision to focus on chemistry and to become involved in political activity in the 1960s. He explains his decision to go to the University of Chicago for graduate school, where he studied under the direction of Steve Berry on low-temperature spectroscopy of alkali halides. Oppenheimer describes his postdoctoral research at what would soon become the Center for Astrophysics at Harvard to work on astrophysics from an atomic and molecular perspective and on the chemistry of comets. He explains how the acidification issue in the Adirondack Lakes serves as an entrée to his interests in environmental policy and how this led to his work for the Environmental Defense Fund. Oppenheimer describes his work on the linearity question and why it is relevant for understanding carbon emissions and his advocacy work on the Clean Air Act. He explains the early science that concluded that even a few degrees of warming would be globally catastrophic, and the early signs that the Republican party would serve generally to block legislation to mitigate climate change. Oppenheimer discusses his involvement with international climate negotiations and policy with the IPCC and the issue of contrarianism in global warming debates. He contrasts the simplicity of the greenhouse effect with the complexity of understanding climate change, and he explains his decision to move to Princeton within the context of what he thought the Kyoto Protocol had achieved. Oppenheimer reflects on how climate change has increased in the public consciousness, and at the end of the interview, he considers early missed opportunities for more change in climate policy, and where he sees reason for both optimism and pessimism as the world faces future threats relating to climate change.

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Katherine Freese, Director of the Weinberg Institute for Theoretical Physics, the Jeff and Gail Kodosky Endowed Chair in Physics at UT Austin, and the Director of the Texas Center for Cosmology and Astroparticle Physics (TCCAP). Freese begins the interview with an overview of terminology, such as cosmology, astrophysics, and astroparticle physics and the delineation between these fields. Then she describes her childhood in Bethesda, Maryland where both her parents were scientists. Freese recalls beginning college at age 16, starting at MIT and then transferring to Princeton. She recounts taking time off after her undergraduate studies, before deciding to pursue graduate studies. Freese began grad school at Columbia but switched to the University of Chicago to work on neutrino physics with David Schramm. She discusses her first post-doc at Harvard, working on WIMPs and dark matter, and then her second post-doc at Santa Barbara with Frank Wilczek. Freese then recalls returning to MIT as a professor where she worked with Alan Guth and Josh Frieman on cosmic inflation. She talks about her transition to the University of Michigan and the exciting developments in cosmology at the time, as well as her introduction to dark energy. Freese describes her more recent involvement with NASA’s SPIDER experiment, as well as the honor of being named to the National Academy of Sciences. Freese discusses the amazing opportunity of being the Director at the Nordic Institute for Theoretical Physics and ends the interview with her hopes for the future of cosmology, namely her hope for finding dark matter.

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Peter L. Bender, Senior Research Associate at the University of Colorado and the Joint Institute for Laboratory Astrophysics (JILA) in Boulder. Bender recounts his childhood in New Jersey, he describes his undergraduate focus in math and physics at Rutgers, and he explains his decision to pursue a graduate degree in physics at Princeton to work with Bob Dicke. He discusses his dissertation research on optical pumping of sodium vapor, which was suggested by Dicke as a means of doing precision measurements of atoms. Bender discusses his postdoctoral research at the National Bureau of Standards, where he focused on magnetic fields and he narrates the administrative and national security decisions leading to the creation of JILA in Boulder, where the laboratory would be less vulnerable to nuclear attack. He describes his work on laser distance measurements to the moon and his collaborations with NASA, and he discusses his long-term advisory work for the National Academy of Sciences and the National Research Council. Bender describes the origins of the NASA Astrotech 21 Program and the LISA proposal, he explains his more recent interests in massive black holes, geophysics and earth science, and he explains some of the challenges associated with putting optical clocks in space. At the end of the interview, Bender reflects on the central role of lasers in his research, and he explains the intellectual overlap of his work in astrophysics and earth physics, which literally binds research that is based both in this world and beyond it.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Roald Sagdeev, professor of physics emeritus at the University of Maryland. He recounts his family’s ethnic Tatar heritage, his childhood in Kazan, and his family’s experience during World War II. Sagdeev describes his physics education at Moscow State University, and how he felt regarding the larger issues of physics and Soviet national security – especially during his time in Sarov, which was the equivalent of Los Alamos National Lab for nuclear weapons research. He discusses his work on radiation transport in stellar atmospheres, his subsequent research at the Kurchatov Institute, and his graduate research in controlled nucleosynthesis under the direction of Lev Landau. Sagdeev describes this time as the origins of his expertise in plasma physics and he explains the work he was doing at a classified site in Siberia. He explains how major Cold War events including the Cuban Missile Crisis and nuclear diplomacy affected his career and his moral satisfaction in not contributing to weapons science. Sagdeev discusses his work at the Institute of Physics of High Temperatures, and his developing interests in astrophysics, and he explains his subsequent tenure at the Space Research Institute of the Academy of Sciences, and why the American moon landing demonstrated that Russia had ceded its dominance in the Space Race. He explains why manned space missions were always more politicized than unmanned missions and describes the political value of the Soviet-US Soyuz-Apollo test project as an opportunity for “hand shaking in space.” Sagdeev discusses his experiences advising Gorbachev on disarmament negotiations, and he shares his perspective on SDI and why it was actually the Pershing missile system that contributed more to the Soviet collapse than U.S. defense spending under Reagan. He describes witnessing the end of the Cold War as watching a movie in slow motion, and he explains how he met Susan Eisenhower and the circumstances leading to his move to the United States, where he joined the faculty at the University of Maryland and served as an adviser to NASA. Sagdeev explains his current interests in intergalactic shock waves and he shares his ideas on the newly formed U.S. Space Force and the weaponizing of space. At the end of the interview, Sagdeev shares that if he could start his career all over again, he would focus on neuroscience.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Kenneth Lande, professor emeritus in the Department of Physics at the University of Pennsylvania. Lande recounts his early childhood in Austria and his family’s escape to New York City from the Nazis has a young boy. Lande describes his interest in science, which he developed during his time at Brooklyn Tech, which he pursued as an undergraduate at Columbia. He describes working on bubble chambers under the direction of Leon Lederman at Nevis Lab in Westchester, and why he gave no consideration to graduate schools other than Columbia. Lande discusses his research at Brookhaven and he describes the major projects of the early 1950s including the Cosmotron and Lederman’s cloud chamber. He describes his thesis research on K mesons and explains that he accepted a job offer at the University of Pennsylvania before he defended his dissertation. Lande describes Penn’s and Princeton’s joint effort to become competitive in accelerator physics, and he explains his growing involvement in neutrino physics and work at Los Alamos in the 1960s. He explains the need to work underground when studying neutrino events caused by cosmic rays, and he describes his involvement with the Homestake mine collaboration. Lande describes his research involving gallium at the Baksan Observatory in the Soviet Union, the importance of the Kamiokande experiment, and he provides a history of neutrino physics that connects Darwin to Hans Bethe. He compares his research at Brookhaven, Fermilab, and Los Alamos, and he explains why he discourages undergraduates from memorizing anything as a way to encourage critical thinking. At the end of the interview Lande reflects on how collaborations have grown enormously over the course of his career, and looking ahead, he sees his contributions to neutrino research as prelude to something much bigger and fundamental for future discovery.

Interviewed by
David Zierler
Interview date
Location
video conference
Abstract

Interview with Brian Schmidt, Distinguished Professor and Vice Chancellor and President of the Australian National University. Schmidt surveys the Covid crisis from his perspective at ANU, and he describes his current interests in cosmology. He recounts his childhood in Montana and Alaska in support of his father’s career in fisheries biology, and he describes his undergraduate education as a dual major in physics and astronomy at the University of Arizona. Schmidt describes the opportunities that led to his graduate work at Harvard, where he worked under the direction of Bob Kirshner and where he met and developed a formative relationship with Adam Riess on supernovae research. He explains his decision to remain at Harvard for his postdoctoral research and he narrates the origins of the High-Z collaboration and its interactions with Saul Perlmutter’s team at Berkeley. Schmidt describes his postdoctoral appointment at ANU as leader of High-Z, and he describes how the collaboration discovered the accelerating expansion of the universe and the process of communicating its findings. He describes the “buzz” leading to the Nobel Prize and his subsequent focus on the SkyMapper project. Schmidt discusses his responsibilities as Vice Chancellor which overlap strongly with Australian national policy, and he describes how he sees the reality of climate change in his 21 years of grape growing. At the end of the interview, Schmidt reflects on how the High-Z discovery has changed astronomy broadly, and he conveys a sense of wonder at the accidental nature by which the team arrived at its discovery.