Climatic changes

Interviewed by
David Zierler
Interview date
Interview dates
September 9, September 25, October 9, October 19, November 3, November 9, November 23, November 30, December 7, and December 14, 2020
Location
Video conference
Abstract

In this interview, Ernest Moniz, Emeritus Professor and Special Adviser to the President of MIT, discusses his time as U.S. Secretary of Energy under Barack Obama. Moniz discusses his time as an undergraduate at Boston College working under Joe Chen and their efforts building a resonant cavity. He speaks about his experience as a graduate student at Stanford University working Dirk Walecka on the study of theoretical condensed matter physics and how it led to his eventual publishing of a paper about using a modified fermi gas to understand deep inelastic scattering. Moniz describes his time working in Washington with the Office of Science and Technology Policy and how the OSTP became marginalized under the George W. Bush and Trump Administrations. He discusses the Wen Ho Lee scandal and subsequent development of the National Nuclear Security Administration and how it has evolved throughout the years. Moniz talks about his partnership with John Deutch at MIT on a policy-oriented study of the future of nuclear power which eventually became known as the series, The Future of... He details his time working in the President’s Council of Advisors on Science and Technology during the Obama Administration and his eventual role as the Secretary of Energy. Moniz Discusses the development of the Iran Nuclear Deal and the cooperation of the countries involved, as well as how the U. S’s relationship with Iran has changed over the years. He reflects on how the Trump Administration undid several Obama era initiatives pertaining to energy and climate and the lasting impacts of those actions. He also discusses becoming an advisor to Saudi Arabia and the planned mega-city of the Tabuk region. Lastly, Moniz reflects upon the challenges the Biden Administration may face moving towards a more decarbonized energy future.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with interviews Michael Oppenheimer, Professor of Geosciences and International Affairs and the High Meadows Environmental Institute at Princeton University. Oppenheimer describes the three-way nature of his work at Princeton, between the School of Public and International Affairs and the Science, Technology, and Environmental Policy program. He describes the possibilities for climate change policy in the transition from Presidents Trump to Biden, and he discusses the moral dimension to climate change diplomacy and what the “Global North” owes the “Global South.” Oppenheimer recounts his childhood in Queens, the opportunities that allowed him to enroll at MIT at age 16, and his decision to focus on chemistry and to become involved in political activity in the 1960s. He explains his decision to go to the University of Chicago for graduate school, where he studied under the direction of Steve Berry on low-temperature spectroscopy of alkali halides. Oppenheimer describes his postdoctoral research at what would soon become the Center for Astrophysics at Harvard to work on astrophysics from an atomic and molecular perspective and on the chemistry of comets. He explains how the acidification issue in the Adirondack Lakes serves as an entrée to his interests in environmental policy and how this led to his work for the Environmental Defense Fund. Oppenheimer describes his work on the linearity question and why it is relevant for understanding carbon emissions and his advocacy work on the Clean Air Act. He explains the early science that concluded that even a few degrees of warming would be globally catastrophic, and the early signs that the Republican party would serve generally to block legislation to mitigate climate change. Oppenheimer discusses his involvement with international climate negotiations and policy with the IPCC and the issue of contrarianism in global warming debates. He contrasts the simplicity of the greenhouse effect with the complexity of understanding climate change, and he explains his decision to move to Princeton within the context of what he thought the Kyoto Protocol had achieved. Oppenheimer reflects on how climate change has increased in the public consciousness, and at the end of the interview, he considers early missed opportunities for more change in climate policy, and where he sees reason for both optimism and pessimism as the world faces future threats relating to climate change.

Interviewed by
Morgan Seag
Interview date
Location
Colorado State University
Abstract

Interview with Dr. Diana Wall, University Distinguished Professor and Professor of Biology at Colorado State University. The interview begins with Wall reflecting on her childhood in Kentucky, the importance of the Girl Scouts in her life, and her early appreciation for the outdoors. She discusses her undergraduate studies in biology and botany at the University of Kentucky and her decision to stay there to pursue a doctorate degree. Wall describes her research on microscopic animals living in soils as well as her thesis on nematodes. She then discusses her postdoctoral position at University of California, Riverside and her field work in Nevada, Utah, and New Mexico. Wall explains the factors that influenced her to begin her work in Antarctica and talks about the shift from individual work to a more collaborative research environment. The interview concludes with Wall’s reflections on international collaborations, the Antarctic Treaty, and climate change.

Interviewed by
David Zierler
Interview dates
May 18 & June 22, 2021
Location
Video conference
Abstract

Interview with Steven Chu, former United States Secretary of Energy and current Professor of Physics and Professor of Molecular and Cellular Physiology in the Medical School at Stanford University. Chu begins by taking us through his changing research interests across his time at Berkeley, Bell Labs and Stanford, and then recounts the beginnings of his interest in climate change in the early 2000s. He talks about his work advising companies who are working on climate change solutions such as carbon capture, and he gives an overview of the research and action being taken around renewable energy sources. Chu then goes back in time and recounts the story of his family, starting with his grandfather in China who emphasized education for all his children. Growing up in Nassau County, Chu describes feeling like a “disappointment” in his family because he didn’t go to an Ivy League school and instead completed his undergraduate studies in math and physics at the University of Rochester. Chu discusses his decision to attend Berkeley for grad school and meeting his advisor Eugene Commins, who was working on weak interactions. Then Chu recounts his transition to Bell Labs and describes the laser work going on there at the time, as well as his burgeoning interest in beta decay experiments. He talks about his research surrounding laser cooling and explains his decision to move to Stanford after Bell. Chu remembers his experience winning the Nobel Prize and accepting the position as director of Lawrence Berkeley National Lab. Chu ends the interview with stories from his time as Secretary of Energy under the Obama administration, such as his experiences with the Deepwater Horizon oil spill, setting up the DOE Loan Program Office, and his international work on climate change.

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, Saul Perlmutter, Professor of Physics at UC Berkeley and Staff Scientist and senior faculty member at Lawrence Berkeley National Laboratory, discusses his life and career. Perlmutter shares that his research has not been slowed down by the pandemic by happy coincidence that he is currently focused on remote data analysis, and he recounts his childhood in Philadelphia where he was educated in Quaker schools. He discusses his early fascination with quantum mechanics and his decision to go to Harvard for his undergraduate education, where he cemented his interests in experimental physics. Perlmutter explains his decision to go to Berkeley for graduate school, where he worked in Buford Price’s group before Richard Muller became his graduate advisor. He discusses his early awareness of the cosmic microwave background and how he became involved with robotic searches for supernovae. Perlmutter describes the importance of NASA’s BITNET program as a way to connect observatory data worldwide to the computer systems at Berkeley, and he explains the intellectual and observational connections between the inflation, expansion, and acceleration of the universe. He discusses his postdoctoral research at Berkeley, and the circumstances leading to him becoming leader of the supernova group and how the DOE became more involved in astrophysics funding. Perlmutter explains the group’s focus on deceleration and he conveys the difficulties in scheduling telescope time to demonstrate spectroscopy proof of type Ia supernovae. He describes the origins of the SNAP satellite project, some of the early theoretical discussions on the nature of dark energy, and when, finally, his group secured long-term support from the Lab. Perlmutter narrates his first interactions with Brian Schmidt and Adam Riess and he describes the batch technique that could predict the discovery of supernovae, which vastly improved the efficiency of scheduling time on large telescopes. He explains the role of dark matter in speeding up the universe’s expansion, and he narrates the celebration with his team when he won the Nobel Prize and how he has chosen the use the political platform that comes with this recognition. Perlmutter discusses his interest in studying climate change, and at the end of the interview, he conveys his excitement about future observational discovery in astrophysics and cosmology.

Interviewed by
David Zierler
Interview dates
May 24, 25 & 26, 2021
Location
Video conference
Abstract

In this interview, Brandon Sorbom, Chief Science Officer at Commonwealth Fusion Systems, discusses the development of his company and interest in nuclear fusion. Sorbom speaks about his time as an undergraduate student at Loyola Marymount University where he majored in Electrical Engineering and Physics and how he discovered his interest in fusion during this time. He describes how his interest in nuclear fusion led him to pursue graduate school at MIT. He details his time as a graduate student working at the MIT Plasma Science and Fusion Center, as well as his experience working with his advisor Dennis Whyte. Sorbom discusses how he first became involved in the development of SPARC, whose goal is to generate net energy from fusion, during his time at MIT. He details the variety of investors for his company and the roles he and his cofounders take on within CSF. Sorbom explains CSF’s current project of demonstrating that superconducting magnets at high fields can be used in fusion. Lastly, Sorbom discusses how fusion energy will likely become the dominant form of energy in the future and how it can help combat climate change.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Marcia McNutt discusses: current position as President of the National Academy of Sciences (NAS) in Washington, D.C.; mission, history, and structure of the NAS; NAS’s work on climate change and COVID-19; experience as a geophysicist; partnering with the National Academies of Engineering and Medicine; childhood in Minnesota; decision to study geophysics; graduate research at Scripps Institution of Oceanography; research on ocean island volcanism in French Polynesia and Hawaii; early use of magnetometers, gravity meters, and seismometers in oceanic plate tectonic observation; development of techniques to take gravity, bathymetry, or topography data on continent and use them in inversion to learn about topography; work directing Monterey Bay Aquarium Research Institute (MBARI); time at US Geological Survey (USGS) under Ken Salazar; professorship at MIT and collaboration with Woods Hole; details of leading an oceanographic expedition in the Marquesas Islands; spearheading structural change at MBARI; MBARI-created autonomous device to identify microscopic ocean life without samples; MBARI-invented deep-sea laser Raman spectrometer; being the first organization to put AI on autonomous underwater vehicles to map plumes; response to the Deepwater Horizon spill; fracking; the National Water Census; decision to become editor-in-chief of Science; procedures as editor; career evolution; becoming president of NAS; transition from the Obama to Trump administrations; opinions on geo-engineering; Decadal survey; Koshland Science Museum and LabX; efforts to nominate and elect younger scientists and underrepresented minorities to the Academy; making recommendations to Congress; collaborations with the private sector; communication with the public; and the 2018 Committee on Women in Science, Engineering, and Medicine’s report on sexual harassment in academia. Toward the end of the interview, McNutt reflects on her career as both scientist and leader and the importance of integrity in research.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Nygren discusses: the problem of the university and specialization in addressing global challenges; reaction to the muon anomaly in the g-2 experiment at Fermilab; work on particle physics with at University of Washington; experimentation at Berkeley lab; post-doc at Columbia with Jack Steinberger working to measure the semileptonic charge asymmetry in neutral kaon decays to find evidence of CP symmetry violation; building an MWPC-based detector; experimental work with Owen Chamberlain and the Bevatron, developing the Bevalac; invention and design of the Time Projection Chamber (TPC) at Berkeley; early models of the TPC and concerns during development; Pief Panofsky; PEP-4 TPC success; involvement with doomed supercolliding super conductor (SSC) project; development of pixel-based vertex detector/smart pixel arrays; making deep-depletion charge coupled devices (CCDs) with Steve Holland; Carl Rubbia; x-ray mammography research with leading to the Philips MicroDose System; contributions to the NESTOR Project neutrino muon detector; involvement with IceCube and gathering digital data; discussion of the AMANDA array; using gas time projection chamber to look for neutrinoless double beta decacy (NLDBD); collaboration with Juan José Gómez Cardenas; using biochemistry to make connections for NLDBD discoveries; the question of whether the neutrino is its own antiparticle; development of Single Molecue Fluorescence Imaging (SMFI); Q-Pix idea; progress building Q-Pix detectors; work at UTA using the Earth-Human System as a way to reorient the university toward the big picture of climate change. Toward the end of the interview, Nygren reflects on his own “eureka moments,” the “failures” that led to deeper learning, his mixed feelings about the future of the planet, and the belief that physics can be a training ground for the new ideas humanity will need. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Yuhua Duan discusses: his role at the National Energy Technology Laboratory (NETL) under the US Department of Energy (DoE); childhood poverty in the Chinese countryside; experience as an undergraduate in 1980s China; master’s degree in chemical physics at the University of Science and Technology (UST) in China; PhD in condensed matter physics; mentorship with T.S. Kê at UST; postdoc studying surface physics at Fudan University under Xide Xie; time at Basel University in the Institute of Physical Chemistry; research associate position at University of Minnesota (U of M) School of Physics and Astronomy under Woods Halley, modeling on the polymer electrolyte for battery applications; switch to Chemical Engineering and Materials Science Department to focus on protein-protein interaction; decision to stay in the US and apply for citizenship; joining the NETL team; research simulating the microwave sintering by finite element approach; work on CO2 capture to fight climate change; discussion of CO2 storage and use; work developing sensor materials that function under extreme conditions; discussion of quantum information science in the energy sector and quantum sensor research; tritium production research; using a supercomputer for his work, discussions of capabilities of the quantum computer; and the impact of political administration changes on work focus at NETL. Toward the end of the interview, Duan reflects on NETL’s contributions to research on controlling carbon emissions and mitigating climate change.