Nucleosynthesis

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Roald Sagdeev, professor of physics emeritus at the University of Maryland. He recounts his family’s ethnic Tatar heritage, his childhood in Kazan, and his family’s experience during World War II. Sagdeev describes his physics education at Moscow State University, and how he felt regarding the larger issues of physics and Soviet national security – especially during his time in Sarov, which was the equivalent of Los Alamos National Lab for nuclear weapons research. He discusses his work on radiation transport in stellar atmospheres, his subsequent research at the Kurchatov Institute, and his graduate research in controlled nucleosynthesis under the direction of Lev Landau. Sagdeev describes this time as the origins of his expertise in plasma physics and he explains the work he was doing at a classified site in Siberia. He explains how major Cold War events including the Cuban Missile Crisis and nuclear diplomacy affected his career and his moral satisfaction in not contributing to weapons science. Sagdeev discusses his work at the Institute of Physics of High Temperatures, and his developing interests in astrophysics, and he explains his subsequent tenure at the Space Research Institute of the Academy of Sciences, and why the American moon landing demonstrated that Russia had ceded its dominance in the Space Race. He explains why manned space missions were always more politicized than unmanned missions and describes the political value of the Soviet-US Soyuz-Apollo test project as an opportunity for “hand shaking in space.” Sagdeev discusses his experiences advising Gorbachev on disarmament negotiations, and he shares his perspective on SDI and why it was actually the Pershing missile system that contributed more to the Soviet collapse than U.S. defense spending under Reagan. He describes witnessing the end of the Cold War as watching a movie in slow motion, and he explains how he met Susan Eisenhower and the circumstances leading to his move to the United States, where he joined the faculty at the University of Maryland and served as an adviser to NASA. Sagdeev explains his current interests in intergalactic shock waves and he shares his ideas on the newly formed U.S. Space Force and the weaponizing of space. At the end of the interview, Sagdeev shares that if he could start his career all over again, he would focus on neuroscience.

Interviewed by
David Zierler
Interview date
Location
video conference
Abstract

Interview with Brian Schmidt, Distinguished Professor and Vice Chancellor and President of the Australian National University. Schmidt surveys the Covid crisis from his perspective at ANU, and he describes his current interests in cosmology. He recounts his childhood in Montana and Alaska in support of his father’s career in fisheries biology, and he describes his undergraduate education as a dual major in physics and astronomy at the University of Arizona. Schmidt describes the opportunities that led to his graduate work at Harvard, where he worked under the direction of Bob Kirshner and where he met and developed a formative relationship with Adam Riess on supernovae research. He explains his decision to remain at Harvard for his postdoctoral research and he narrates the origins of the High-Z collaboration and its interactions with Saul Perlmutter’s team at Berkeley. Schmidt describes his postdoctoral appointment at ANU as leader of High-Z, and he describes how the collaboration discovered the accelerating expansion of the universe and the process of communicating its findings. He describes the “buzz” leading to the Nobel Prize and his subsequent focus on the SkyMapper project. Schmidt discusses his responsibilities as Vice Chancellor which overlap strongly with Australian national policy, and he describes how he sees the reality of climate change in his 21 years of grape growing. At the end of the interview, Schmidt reflects on how the High-Z discovery has changed astronomy broadly, and he conveys a sense of wonder at the accidental nature by which the team arrived at its discovery.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Wick Haxton, professor of physics at UC Berkeley. Haxton recounts his childhood in Santa Cruz and his early interests in math and science. He describes his undergraduate education at the newly created UC Santa Cruz where his initial interest was in mathematics before he was given the advice that he did “mathematics like a physicist.” Haxton discusses his graduate work at Stanford where his original intent was to study general relativity before he connected with Dirk Walecka and Bill Donnelly to focus on nuclear theory and dense nuclear matter. He discusses his postdoctoral research at the University of Mainz where he concentrated on photo-pion physics during the early days of chiral perturbation theory, and he explains the opportunities that led to his next appointment at the LAMPF facility at Los Alamos. Haxton emphasizes the excellence of both his colleagues and the computational capacity at the Lab, and he describes his faculty appointment at Purdue and the solar neutrino experiment he contributed to in Colorado. He explains the opportunities that led to him joining the faculty at the University of Washington where the DOE was about to fund the Institute for Nuclear Theory. Haxton explains the “breakup” between nuclear theory and particle theory and how the INT addressed that. Haxton discusses the opportunities afforded at the INT to engage in nuclear astrophysics and he explains the rise and fall of the Homestake DUSEL project. He explains his decision to go emeritus at UW and to join the faculty at UC Berkeley and to be dual hatted at the Berkeley Lab, and he describes his tenure as department chair. At the end of the interview, Haxton describes his current work organizing the new Physics Frontier Center and the challenges presented by the pandemic, and he credits his formative time as Los Alamos for the diverse research agenda he has pursued throughout his career.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Peter Lyons, former Assistant Secretary for Nuclear Energy in the Department of Energy. Lyons describes his consulting work as an advisor to National Laboratories, for Jordan’s Atomic Energy Advisory Board, and as a Distinguished Energy Fellow at the Institute of Energy Economics of Japan. He recounts his childhood in Nevada, and he discusses his undergraduate education in physics at the University of Arizona. Lyons discusses the opportunities that led to his graduate research at Caltech where Charlie Barnes and Willy Fowler were formative influences for his work on stellar nucleosynthesis. He describes his postdoctoral appointment at Los Alamos to work on laser fusion and his work in the plasma group. Lyons explains the value of fiber optics for nuclear testing, and he describes his view of SDI when he was a program director at the Lab. He describes his work as Deputy Associate Director for Defense Research and Applications, and how the end of the Cold War was felt at the Lab and in particular for its work in securing the nuclear stockpile of the former Soviet Union. Lyons describes how the Lab adapted to post-Cold War research during his time as Deputy Associate Director for Energy and Environment, and how he became increasingly interested in civilian energy issues. He discusses how the Lab became more involved as a partner to major industrial projects, and he explains his decision to leave the Lab to work for Senator Pete Domenici as science advisor, where he was closely involved in legislation on a number of scientific projects. Lyons describes recent advances in civilian nuclear energy and why hydrogen will be a significant player in the energy future. He discusses his tenure at NRC Commissioner, and his appointment at the Department of Energy with the incoming Obama administration. Lyons explains the impact of the Fukushima disaster on broader discussions relating to civilian nuclear energy, and he explains his decision to retire and the satisfaction he has felt as many of the program he contributed to continue to grow. At the end of the interview, Lyons provides a broad view on where civilian nuclear energy is on the right track as part of a carbon neutral future, and where he sees opportunities for technical and administrative improvement. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Edward “Rocky” Kolb is the Director of the Kavli Institute for Cosmological Physics at the University of Chicago and the Arthur Holly Compton Distinguished Service Professor of Astronomy at the University of Chicago. In this interview, Kolb explains how he acquired his nickname and he recounts his upbringing in New Orleans and his habit of spending time in the local library, where he developed his interest in science. He describes the financial constraints that compelled him to attend the University of New Orleans for college, and he characterizes his education there as broad but not deep, which caused him to consider a wide range of specialties for his graduate research at the University of Texas. Kolb describes working with his graduate advisor Duane Dicus in applying particle physics to cosmological questions, and he summarizes his dissertation research on the effects of axions in stars. He discusses his postdoctoral research with Willy Fowler at Caltech, and he emphasizes the influence of Allan Sandage on his decision to focus on cosmology.  Kolb describes his second postdoctoral fellowship at Los Alamos where he joined the burgeoning astrophysics group in the Theoretical Division to work on Big Bang nucleosynthesis.  He explains his decision to join the astrophysics group at Fermilab, where he collaborated closely with Michael Turner and benefited from the support of Leon Lederman. He describes his developing interest in supersymmetry and neutrino oscillations, he describes the impact of Alan Guth’s lectures on inflation, and he explains his increasing involvement with the astronomy and astrophysics department at the University of Chicago culminating with an offer for him to become chair of the department.  He describes his objectives and achievements in that position, he explains how he maintained research interest in creating particles from the vacuum, and he describes how this research could be of value in the ongoing quest to understand dark matter. At the end of the interview, Kolb reflects on the different approaches that religion and science take to understanding reality, and he explains why he is most optimistic that understanding dark matter is the most likely major future breakthrough in his field.

Interviewed by
Patrick McCray
Interview date
Location
Tucson, Arizona
Abstract

This interview with A. G. W. Cameron focuses on selected aspects of Cameron's research including nucleosynthesis and use of computers in research. Covers Cameron's different topics of research as well as various institutional appointments. Also comments on style of research and William Fowler's receipt of Nobel prize. Other topics discussed include: his family background and childhood, graduate work at the University of Saskatchewan, Leon Katz, photonuclear reactions, astrophysics, Paul Merrill, galactic evolution, Iowa State teaching nuclear physics, Chalk River, advising work for Atomic Energy Commission (AEC) and Department of Energy (DOE), hydrogen bomb, origin of the moon, Los Alamos National Laboratory, Stirling Colgate, nuclear astrophysics, teaching at Yale University, big bang theory, Harvard Smithsonian Center for Astrophysics, Fred Whipple, Leo Goldberg, Hans Suess, Harold Urey, William Fowler, Fred Hoyle, Geoffrey Burbidge, California Institute of Technology, National Aeronautics and Space Administration (NASA).

Interviewed by
David DeVorkin
Interview date
Location
American Institute of Physics, New York City, New York
Abstract

In this interview, Geoffrey Burbidge discusses his life and career.  Topics discussed include: his family and childhood; Bristol University; Nevill Mott; University College, London; Harrie Massey; David Robert Bates; theoretical physics seminars at Cambridge University; Richard Feymnan; Freeman Dyson; Dick Dalitz; Abdus Salam; Nicholas Kemmer; becoming interested in astronomy and astrophysics via Margaret Burbidge; Royal Astronomical Society; Clive Gregory; research into stellar parallax, stellar atmospheres; Herbert Dingle; Auger effect; Otto Struve; Harvard University; Bart Bok; Donald Menzel; Harlow Shapley; Yerkes Observatory; development of radio astronomy; I. I. Rabi and big bang skepticism; Chandrasekhar; Gerard Kuiper; Enrico Fermi; Cavendish Laboratory, Martin Ryle; nucleosynthesis; Kapitza Club; Willie Fowler; Fred Hoyle; stellar evolution; steady state cosmology; red shift; Erwin Finlay-Freundlich; Max Born; Mount Wilson Observatory; Allan Sandage; Milt Humason; Ira Bowen; status at women at Hale observatories and at the California Institute of Technology (CalTech); Edwin Hubble; Walter Baade; synchrotron radiation; Rudolph Minkowski; Californium and supernovae; Halton Arp; Hans Suess; Vera Rubin's work on anisotropy; quasars; galaxy formation.

Interviewed by
Paul Wright
Interview date
Location
University of California at San Diego
Abstract

Early life in the Cotswolds, England; Bristol University, 1943, and physics program during WWII; teachers include Nevill Mott and Edward Tyndall; effect of WWII; work with Harrie Massey on meson capture; University College, London; meets wife and growing contacts in astronomy, late 1940s; thesis, 1952; work in stellar atmosphere; visit to U.S. at Howard and Terkes, 1951-1953; Cavendish group under Martin Ryle, house theoretician; contact with William Fowler and growing interest in nucleosynthesis, 1954; fellowship at Pasadena, 1955; opinions on operation of major observatories, philosophy of cosmological research, reaction to steady state; problem of high energy sources, synchrotron radiation; belief structure in cosmology; Halton Arp’s work; Nuclear Processes in Astrophysics - B2FH; Yerkes Observatory, 1957; physics of galaxies, 1959. Also prominently mentioned are: Wilhelm Heinrich Walter Baade, Margaret Burbidge, Subrahmanyan Chandrasekhar, Paul A. M. Dirac, Enrico Fermi, William Alfred Fowler, James Edward Gunn, Fred Hoyle, Martin Ryle, Allan Sandage, Maarten Schmidt, and Arthur Wolfe.

Interviewed by
David DeVorkin
Interview date
Location
University of California, Santa Cruz
Abstract

Discusses her childhood and education; her developing interest in astronomy; studying with C. C. L. Gregory at the University of London Observatory and University College; her thesis work on the variations in Gamma Cassiopeia; meeting and marrying Geoffrey Burbidge; discrimination against women in the Carnegie Followships; the conflict between her work and having a family; the decision to go to the U.S. and Yerkes; use of the 82-inch telescope at McDonald; recollections of Shapley; disagreements between Kuiper and Urey; development of interest in abundance of elements; Baade's inspiration; offers for Geoffrey Burbidge from Manchester and Cambridge and move to Cambridge University; Geoffrey's differences with M. Ryle involving source of radio emission; meeting Willie Fowler; decision to return to the U. S. and Caltech; observing time at Mt Wilson; reactions of the old guard to women observers; collaborations with Baade on supernovae synthesis (1956); work on barium II stars; the search for permanent positions; advantage of position at Chicago/Yerkes/McDonald; move to Chicago and work on galaxies (1957-1962); observations of Centaurus A at 82-inch McDonald telescope; leaving Yerkes to go to La Jolla with Revelle; continued research on quasars and general research; cosmological implications of quasars; summer in Pasadena with Hoyle; development of Hoyle's Institute; challenges of Burbidge, Fowler, Hoyle concept of nucleosynthesis; Unsold's arguments; Arp's work; lack of satisfactory gravitational red shift models; university's relationship with Lick; infra-red work future of Greenwich and changes in the power structure in the British Astronomical establishment; offer of position as head of the Science Research Council; decision to take a leave of absence from La Jolla and accept; difficulties of the position and the decision as to where to locate the Northern Hemisphere Observatory; decision to return to the U. S.; American Astronomical Society presidency (1976-1978); AAS and the Equal Rights Amendment; her most satisfying work in nucleosynthesis, B2FH. Among those prominently mentioned: Arp, Baade, Bowen, Chandrasekhar, Greenstein, Hoyle, Kuiper, P. Merrill, H. Minkowski, R. Revelle, M. Ryle, Sandage, Shapley, Stromgren, Unsold, Urey.

Interviewed by
Martin Harwit
Interview date
Location
Living room of Dr. Alpher's home, Schenectady, New York
Abstract

Session two is a joint interview with Robert Herman. Family background and early education, work at Carnegie Institution's Department of Terrestrial Magnetism, studies at George Washington University, wartime employment and studies, work with Navy on detection of mines; graduate studies with George Gamow while working at Johns Hopkins Applied Physics Laboratory, early universe theory, first encounter and later work with Robert Herman, interaction with physics community. Subrahmanyan Chandrasekhar and L. R. Henrich, neglect of Alpher and Herman work by astronomical community; General Electric projects: supersonic flow, re-entry physics, the Talaria project; the Penzias/Wilson observations; honors, marriage. Miscellaneous recollections about youth in Washington, D.C., service on scientific committees, public education efforts, work at General Electric. Meeting of Alpher and Herman, their collaboration, cosmological theory, work with George Gamow, Edward Teller, Hans Bethe, Edward Condon, cosmic background radiation, controversy with steady-state adherents and others; systematic neglect of their work, nucleosynthesis in stars, reactions to awards, discussions with Arno A. Penzias at the time of Nobel Prize award (with Robert W. Wilson), correspondence with S. Pasternack about P. James Peeble's cosmology papers, Alpher paper on neutrino and photon background calculation, James Follin, C. Hayashi, Steven Weinberg's presentation in his book The First Three Minutes; current cosmological efforts, A. Zee's papers on cosmology, views on the National Academy of Sciences and the National Academy of Engineering, Fred Hoyle's recent writings. Also prominently mentioned are: Niels Henrik David Bohr, Albert Einstein, Richard Phillips Feynman, Lawrence Randolph Hafstad, Robert Hofstadter, Huntington, and H. P. Robertson.