Groups Gather to Discuss S&E Workforce Issues

Share This

Share/Save
Publication date: 
13 December 2002
Number: 
135

Many interested organizations joined together last month at a summit addressing the size, training and capacity of the nation's science and engineering (S&E) workforce. Representatives from at least 40 scientific and engineering societies, government agencies, think tanks and professional associations gathered for a day and a half to present their views at this "Pan-organizational Summit on the U.S. S&E Workforce," sponsored by the National Academies' Government-University-Industry Research Roundtable. Low domestic production of S&E workers, the approaching retirement age of many in the S&E workforce, and the nation's dependence on foreign workers have made this a topic of concern for many.

It was apparent that the economy has affected various fields of science and engineering differently, with some experiencing unusually high unemployment and others seeing a pressing need for more workers. Even so, there seemed to be a consensus that K-12 science, technology, engineering and math (STEM) education must be improved, that more and timelier data is needed, and that the costs and rewards of pursuing an S&E career must be better understood. There was also general agreement that the capacity of the S&E workforce would be enhanced if workers' training prepared them to adapt to shifting employment needs.

Shirley Malcolm of the American Association for the Advancement of Science pointed out that while the U.S. is still the world leader in the S&E enterprise, its leadership position depends in part on the foreign workers that help make up the S&E workforce. With other countries building their R&D capacity and creating more opportunities for skilled workers, she said, continued dependence on this influx of workers is risky and the U.S. should focus on strengthening its domestic workforce. To do so, many speakers agreed, will require that the U.S. strengthen its pre-college STEM education, and determine how to make science and engineering careers more attractive, particularly for women, underrepresented minorities, and the disabled.

"Those who are concerned about whether the production of U.S. scientists and engineers is sufficient for national needs must pay serious attention to whether careers in science and engineering are attractive relative to other career opportunities available to U.S. students," warned Michael Teitelbaum of the Alfred P. Sloan Foundation. He and others emphasized the significant time and financial commitment of earning a graduate degree in science compared to other professional degrees. It has been "commonplace" in the last 10-15 years, he said, to hear claims about looming shortages in the S&E workforce, but "labor market projections that go very far into the future are notoriously problematic." Teitelbaum cited evidence that "overall labor markets for scientists and engineers are relatively slack" and vary considerably across fields and over time.

Harris Miller of the Information Technology Association of America stated that the slowdown of the information technology (IT) industry "has resulted in a decreased demand for IT workers." However, he said employers are still having problems finding qualified IT workers with needed skills, and his organization is concerned about the field's long-term ability to produce and maintain an adequate supply of workers. Other speakers reported that some types of engineering- and chemistry-related jobs were moving offshore and demand was down for U.S. workers in those fields. On the other hand, the manufacturing industry is anticipating a labor shortage, said Phyllis Eisen of the National Association of Manufacturers, and is "scared" that it does not have the qualified workforce to respond to customers' needs and stay competitive.

Representatives from several federal agencies described difficulties hiring qualified S&E workers, and expect the situation to worsen as the federal S&E workforce ages. According to Mary Good of the Alliance for Science and Technology Research in America, over 50 percent of federal S&E workers may retire in the next decade. She remarked that U.S. production of bachelor's degrees in engineering and the non-life sciences dropped during the 1990s and suggested that the decline might be attributable, at least in part, to the long-term decline in federal funding for mathematical and physical sciences and engineering. Good presented data showing that, for these fields, students' degree choices correlate strongly with the availability of federal research funding.

There was substantial agreement that more timely and comprehensive data is needed to understand S&E employment trends and the factors that affect them. Bill Butz of the RAND Science and Technology Policy Institute presented a paper that posed the questions, "Is there a shortage of scientists and engineers? How would we know?" The paper, using production of PhD scientists and engineers as an example, looked at a number of possible definitions of a shortage: declining production; competitors' share of production increasing; production lower than producers desire or the nation deems necessary; or production not meeting market demand. Butz indicated that much of the available data is not current enough, and the definitions of shortage used by various groups are not consistent enough, to give definitive answers.

It became obvious, as the summit continued, that there are differing conceptions of "shortage" that address different disciplines, segments of the workforce, and degree levels, over differing time horizons. Most participants agreed, though, that in order for the nation to be prepared for future economic developments and S&E workforce needs, it is necessary to improve K-12 STEM education so students are well-prepared to pursue careers in science and engineering, and that if S&E workers are trained to be flexible and agile, the nation's capacity to fill its future S&E workforce needs will be enhanced. Some disciplines are considering how to revise their degree programs to increase the broad-based general education of students even as the fields require ever-more-specialized knowledge. Several speakers raised the idea of bachelor's-plus or professional master's degree programs.

The result of the summit was a series of consensus recommendations for further action. Working groups are being formed to address each of these items: (1) Develop a coordinated, multi-sector effort to improve the "domestic S&E pipeline issue;" (2) Make STEM education better and more attractive and improve teacher training; (3) Target student financial aid to S&E majors; (4) Reform the S&E undergraduate experience, both curriculum and pedagogy, to attract a wider variety of students; (5) Address the "poor effort-reward ratio" of S&E careers; (6) Design interconnecting career and education pathways and resources so S&E workers and students can develop "agility;" (7) Ensure federal support of lifelong learning, and focus H-1B visa fees on retraining of S&E workers; (8) Increase participation of women and minorities in the S&E enterprise; and (9) Develop a comprehensive national database and a model of S&E education and workforce pathways to understand the relevant factors and "guide intelligent policymaking."