Search results
Displaying 1 - 2 of total 2 results:
Born in Oregon 1912, entered Purdue University, 1932, studying solid state physics, teaching assistant work with Lothar Nordheim on crystal structure, 1937; Ph.D. thesis, 1937 (published 1940); physics department under Karl Lark-Horovitz grows in the 1930s, visiting lecturers (refugees from Germany and Europe: Lothar Nordheim, Hans Bethe, Edward Teller, Eugene Wigner). First cyclotron (homemade), 1935. War work: basic research in germanium, rectification of crystals (Bethe), close connections with Massachusetts Institute of Technology, Columbia University, University of Pennsylvania; Lark-Horovitz chose solid state physics as less sensitive field with respect to clearance; showed silicon-germanium intrinsic semiconductors, 1942; General Electric’s germanium interest; success interpreting resistivity and thermoelectric behavior in germanium, 1944. American Physical Society meeting intense interest in Purdue presentations, January 1946; the transistor, 1948 (William Shockley, Ralph Bray); how to grow germanium crystals, 1949; Esther Conwell’s thesis (Victor Weisskopf). Also prominently mentioned are: John Backus, Seymour Benzer, Hubert Maxwell James, A. A. Knowlton, K. W. Meissner, E. P. Miller, Ronald Smith, Herbert J. Yearian; and Purdue University Department of Physics.
Founding of the school of physics, Università di Roma, role of Orso Mario Corbino and others in recruiting young physicists; the decision to work on nuclear physics; financial support for and public knowledge of work at the university; contacts with other laboratories in Europe and the U.S.; available technology in Rome, ca. 1930; journal literature; visitors to Rome; circumstances of move to Università di Palermo, 1936; work and facilities in Palermo; early failures of physicists to recognize fission; early uses of cyclotron; mathematics and nuclear physics in 1930s; models of the nucleus and experimental work; circumstances of move to University of California at Berkeley, 1938; experiment and theory in nuclear physics at Berkeley; work on radiochemistry; alteration of half-lives of beta-radioactive substances; detection equipment; effect of work at Los Alamos Scientific Laboratory on nuclear physics; significance of nucleon-nucleon scattering experiments; entry into nuclear physics of students trained in technology during World War II; beginnings of high-energy physics; experimental physics and particle accelerators; fashions in physics; discovery of the antiproton; work considered personally satisfying. Also prominently mentioned are: Edoardo Amaldi, Felix Bloch, Niels Henrik David Bohr, Paul Adrien Maurice Dirac, Michael Faraday, Otto Robert Frisch, Guglielmo, Georg von Hevesy, Ernest Orlando Lawrence, Tullio Levi-Cività, Lo Surdo, Ettore Majorana, Lise Meitner, Ida Noddack, J. Robert Oppenheimer, Carlo Perrier, Franco D. Rasetti, Ernest Rutherford, Glenn Seaborg, Elfriede Segrè, V. Volterra, Chien-Shiung Wu, Hideki Yukawa; Columbia University, and Purdue University.