Search results
Displaying 1 - 10 of total 40 results:
Includes information on his pre-Harvard education and postdoctoral experience; pre-World War II work at Harvard with students and in building of the cyclotron; wartime work on radar in U.S. and Britain; move to the Manhattan Project and responsibility for Trinity Test site; return to Harvard and start of new cyclotron building.
Recollections of physics community in 1920s and early 1930s; opportunities for physics work in Europe; awareness of political climate in Germany (1932); relationship with Werner Heisenberg at University of Leipzig; awarded Rockefeller Fellowship to study at University of Rome; contacts with physicists after Leipzig and before Rome; John Von Neumann's list of refugee physicists; offered appointment to position at Stanford University; visit to University of Copenhagen and Niels Bohr's advice to accept appointment; relinquishing of second half of fellowship; influenced by Bohr, Heisenberg and
Brief interview focused on secrecy in the 1940s. As member of the National Academy of Sciences, Division of Physical Sciences, Breit expressed the necessity of keeping track of the fission problem through a publications committee headed by Frank B. Jewett. Comments on Manhattan Project scientists (Leo Szilard, Hans A. Bethe).
Family background; early interest in mathematics; physics at University of Manchester; Ernest Rutherford's influence; early research under Rutherford at Manchester; examination by Joseph J. Thomson for degree; recollections of associates at Manchester, including Niels Bohr; scholarship to Universität Berlin and work there with Hans Geiger; internment during World War I; scientific work at internment camp; return to Manchester; move with Rutherford to University of Cambridge; appointment as Assistant Director of Research at Cavendish Laboratory (ca.
Family background; early interest in mathematics; physics at University of Manchester; Ernest Rutherford's influence; early research under Rutherford at Manchester; examination by Joseph J. Thomson for degree; recollections of associates at Manchester, including Niels Bohr; scholarship to Universität Berlin and work there with Hans Geiger; internment during World War I; scientific work at internment camp; return to Manchester; move with Rutherford to University of Cambridge; appointment as Assistant Director of Research at Cavendish Laboratory (ca.
Family background; grows up in California; early interest in electronics. Undergraduate and graduate studies at Caltech. Strong interest in history of science as undergraduate. Ph.D. in physics, 1932. University of California at Berkeley, 1932-1934. MIT from 1934; founder of the Radioactivity Center. Starts first course designated "nuclear physics," January 1935. Strong interest in study of radium poisoning; radium tolerance in humans, cancer research. World War II work, postwar work; establishment of Laboratory for Nuclear Science and Engineering.
Family background; grows up in California; early interest in electronics. Undergraduate and graduate studies at Caltech. Strong interest in history of science as undergraduate. Ph.D. in physics, 1932. University of California at Berkeley, 1932-1934. MIT from 1934; founder of the Radioactivity Center. Starts first course designated "nuclear physics," January 1935. Strong interest in study of radium poisoning; radium tolerance in humans, cancer research. World War II work, postwar work; establishment of Laboratory for Nuclear Science and Engineering.
Family background; grows up in California; early interest in electronics. Undergraduate and graduate studies at Caltech. Strong interest in history of science as undergraduate. Ph.D. in physics, 1932. University of California at Berkeley, 1932-1934. MIT from 1934; founder of the Radioactivity Center. Starts first course designated "nuclear physics," January 1935. Strong interest in study of radium poisoning; radium tolerance in humans, cancer research. World War II work, postwar work; establishment of Laboratory for Nuclear Science and Engineering.
Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations.
Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations.