Search results
Displaying 1 - 8 of total 8 results:
In this interview, Edward Uhler Condon discusses topics such as: his family background; early education; influence of high school physics teacher, William Howell Williams, 1914-1918, and later teacher at University of California, Berkeley; interval as boy reporter. Undergraduate years at Berkeley, beginning in 1921 in chemistry department; Ph.D. in physics, 1926; association with Fred Weinberg. Discovery of Erwin Schrödinger's wave mechanics papers; International Education Board fellowship to study quantum mechanics at Göttingen, 1926. Work on Bell Systems technical journal for six months before accepting lectureship at Columbia University; teaching post at Princeton University; Condon and Philip Morse's Quantum Mechanics, result of Columbia and Princeton courses. Relations with University of California; role in persuading Ernest Lawrence to go to Berkeley from Yale University. Recollections of Michigan summer school. Work at Westinghouse on applications of nuclear physics to industry, including completion of Van de Graaff machine, 1937-1940; setting up Westinghouse research fellowships, 1938; Massachusetts Institute of Technology conference on applications of nuclear physics, October 1940; war work on microwave radar. J. Robert Oppenheimer asks Condon to come to Los Alamos Scientific Laboratory; tour of Los Alamos with Leslie Groves; reasons for leaving Los Alamos after a few weeks. Work as head of theoretical section of Lawrence's laboratory, August 1943-1945; British scientists. Evaluation of Westinghouse's four million-volt machine. Description of Nimitron, a physical computer, designed for 1939 World's Fair. Discussion of 1928 radioactivity. Reminiscences of Ronald Gurney's later career and his trouble with security. Discussion of postwar events, such as the Quebec Conference, McMahon Act, Moran's book about Winston Churchill. Peacetime development of atomic energy; establishment of the Senate's Special Committee on atomic energy. Directorship of the National Bureau of Standards (NBS), 1945-1951. Work on superconductivity; W. Emmanuel Maxwell and John Pelham. Accomplishments at NBS. Hearings in 1948 and 1952 before the Department of Commerce under Truman's loyalty program; Averell Harriman. Director of Research at Corning, 1951. House Un-American Activities Committee hearing, 1954; J. R. Oppenheimer and Bernard Peters; reopening of clearances, loss of Corning position; becomes Corning consultant. Head of Washington University physics department, 1956-1963; Oberlin College, 1962; interest in modernizing teaching; Joint Institute for Laboratory Astrophysics (JILA), from 1963; editor of Reviews of Modern Physics, 1957-1968; establishment of the National Accelerator Laboratory (Chicago); the UFO story. Comments on his most satisfying and his least satisfying work. Also prominently mentioned are: Raymond T. Birge and Henry Wallace.
In this interview, Edward Uhler Condon discusses topics such as: his family background; early education; influence of high school physics teacher, William Howell Williams, 1914-1918, and later teacher at University of California, Berkeley; interval as boy reporter. Undergraduate years at Berkeley, beginning in 1921 in chemistry department; Ph.D. in physics, 1926; association with Fred Weinberg. Discovery of Erwin Schrödinger's wave mechanics papers; International Education Board fellowship to study quantum mechanics at Göttingen, 1926. Work on Bell Systems technical journal for six months before accepting lectureship at Columbia University; teaching post at Princeton University; Condon and Philip Morse's Quantum Mechanics, result of Columbia and Princeton courses. Relations with University of California; role in persuading Ernest Lawrence to go to Berkeley from Yale University. Recollections of Michigan summer school. Work at Westinghouse on applications of nuclear physics to industry, including completion of Van de Graaff machine, 1937-1940; setting up Westinghouse research fellowships, 1938; Massachusetts Institute of Technology conference on applications of nuclear physics, October 1940; war work on microwave radar. J. Robert Oppenheimer asks Condon to come to Los Alamos Scientific Laboratory; tour of Los Alamos with Leslie Groves; reasons for leaving Los Alamos after a few weeks. Work as head of theoretical section of Lawrence's laboratory, August 1943-1945; British scientists. Evaluation of Westinghouse's four million-volt machine. Description of Nimitron, a physical computer, designed for 1939 World's Fair. Discussion of 1928 radioactivity. Reminiscences of Ronald Gurney's later career and his trouble with security. Discussion of postwar events, such as the Quebec Conference, McMahon Act, Moran's book about Winston Churchill. Peacetime development of atomic energy; establishment of the Senate's Special Committee on atomic energy. Directorship of the National Bureau of Standards (NBS), 1945-1951. Work on superconductivity; W. Emmanuel Maxwell and John Pelham. Accomplishments at NBS. Hearings in 1948 and 1952 before the Department of Commerce under Truman's loyalty program; Averell Harriman. Director of Research at Corning, 1951. House Un-American Activities Committee hearing, 1954; J. R. Oppenheimer and Bernard Peters; reopening of clearances, loss of Corning position; becomes Corning consultant. Head of Washington University physics department, 1956-1963; Oberlin College, 1962; interest in modernizing teaching; Joint Institute for Laboratory Astrophysics (JILA), from 1963; editor of Reviews of Modern Physics, 1957-1968; establishment of the National Accelerator Laboratory (Chicago); the UFO story. Comments on his most satisfying and his least satisfying work. Also prominently mentioned are: Raymond T. Birge and Henry Wallace.
In this interview, Edward Uhler Condon discusses topics such as: his family background; early education; influence of high school physics teacher, William Howell Williams, 1914-1918, and later teacher at University of California, Berkeley; interval as boy reporter. Undergraduate years at Berkeley, beginning in 1921 in chemistry department; Ph.D. in physics, 1926; association with Fred Weinberg. Discovery of Erwin Schrödinger's wave mechanics papers; International Education Board fellowship to study quantum mechanics at Göttingen, 1926. Work on Bell Systems technical journal for six months before accepting lectureship at Columbia University; teaching post at Princeton University; Condon and Philip Morse's Quantum Mechanics, result of Columbia and Princeton courses. Relations with University of California; role in persuading Ernest Lawrence to go to Berkeley from Yale University. Recollections of Michigan summer school. Work at Westinghouse on applications of nuclear physics to industry, including completion of Van de Graaff machine, 1937-1940; setting up Westinghouse research fellowships, 1938; Massachusetts Institute of Technology conference on applications of nuclear physics, October 1940; war work on microwave radar. J. Robert Oppenheimer asks Condon to come to Los Alamos Scientific Laboratory; tour of Los Alamos with Leslie Groves; reasons for leaving Los Alamos after a few weeks. Work as head of theoretical section of Lawrence's laboratory, August 1943-1945; British scientists. Evaluation of Westinghouse's four million-volt machine. Description of Nimitron, a physical computer, designed for 1939 World's Fair. Discussion of 1928 radioactivity. Reminiscences of Ronald Gurney's later career and his trouble with security. Discussion of postwar events, such as the Quebec Conference, McMahon Act, Moran's book about Winston Churchill. Peacetime development of atomic energy; establishment of the Senate's Special Committee on atomic energy. Directorship of the National Bureau of Standards (NBS), 1945-1951. Work on superconductivity; W. Emmanuel Maxwell and John Pelham. Accomplishments at NBS. Hearings in 1948 and 1952 before the Department of Commerce under Truman's loyalty program; Averell Harriman. Director of Research at Corning, 1951. House Un-American Activities Committee hearing, 1954; J. R. Oppenheimer and Bernard Peters; reopening of clearances, loss of Corning position; becomes Corning consultant. Head of Washington University physics department, 1956-1963; Oberlin College, 1962; interest in modernizing teaching; Joint Institute for Laboratory Astrophysics (JILA), from 1963; editor of Reviews of Modern Physics, 1957-1968; establishment of the National Accelerator Laboratory (Chicago); the UFO story. Comments on his most satisfying and his least satisfying work. Also prominently mentioned are: Raymond T. Birge and Henry Wallace.
Family background and childhood in Germany, 1919-1934; emigration to U.S. and undergraduate study and life at Princeton University, 1934-1938. Graduate work at California Institute of Technology, 1938-1942; work with Jesse W. M. DuMond, course load, and importance of his thesis. War work at California Institute of Technology; problems because of enemy alien status; work on firing error indicators. War work at Los Alamos Scientific Laboratory: atomic bomb explosion, feelings concerning implications. Research at University of California at Berkeley, 1945-1951: construction of linear accelerator under Luis Alvarez (training, funding, working relationships, work schedules, relationship with other research groups), work on synchrotron, bevatron, Material Testing Accelerator project, neutal meson work and pion work; campus life, teaching responsibilities, textbook writing with Melba Phillips; security measures at Berkeley, 1945-1951: Berkeley's loyalty oath leads to move to Stanford University, 1951. The "Screw Driver" report (with Robert Hofstadter) for the Atomic Energy Commission. Korean War-related work (Felix Bloch, Edward L. Ginzton, Robert Kyhl); rigid politics of physics department; Washington involvement; consultant to the Air Force Science Advisory Board; Hans Bethe, Edward Teller; Bethe's Conference of Experts, 1958; Geneva negotiations, 1959; George Kistiakowski and Isidor I. Rabi; appointment to President's Science Advisory Committee, 1960; Dwight D. Eisenhower. Government support of science; Stanford Linear Accelerator (SLAC); Joint Committee on Atomic Energy hearings (Ginzton, Varian Associates); avoiding the "Berkeley image" at SLAC. Also prominently mentioned are: Sue Gray Norton Alsalan, Carl David Anderson, Raymond Thayer Birge, Hugh Bradner, Henry Eyring, Don Gow, Alex E. S. Green, William Webster Hansen, Joel Henry Hildebrand, Giulo Lattes, Ernest Orlando Lawrence, Edwin Mattison McMillan, John Francis Neylan, Hans Arnold Panofsky, Ryokishi Sagane, Robert Gordon Sproul, Raymond L. Steinberger, Charles Hard Townes, Watters, Gian Carlo Wick, John Robert Woodyard, Dean E. Wooldridge, Fritz Zwicky; Federation of American Scientists, and Lawrence Radiation.
Family background and childhood in Germany, 1919-1934; emigration to U.S. and undergraduate study and life at Princeton University, 1934-1938. Graduate work at California Institute of Technology, 1938-1942; work with Jesse W. M. DuMond, course load, and importance of his thesis. War work at California Institute of Technology; problems because of enemy alien status; work on firing error indicators. War work at Los Alamos Scientific Laboratory: atomic bomb explosion, feelings concerning implications. Research at University of California at Berkeley, 1945-1951: construction of linear accelerator under Luis Alvarez (training, funding, working relationships, work schedules, relationship with other research groups), work on synchrotron, bevatron, Material Testing Accelerator project, neutal meson work and pion work; campus life, teaching responsibilities, textbook writing with Melba Phillips; security measures at Berkeley, 1945-1951: Berkeley's loyalty oath leads to move to Stanford University, 1951. The "Screw Driver" report (with Robert Hofstadter) for the Atomic Energy Commission. Korean War-related work (Felix Bloch, Edward L. Ginzton, Robert Kyhl); rigid politics of physics department; Washington involvement; consultant to the Air Force Science Advisory Board; Hans Bethe, Edward Teller; Bethe's Conference of Experts, 1958; Geneva negotiations, 1959; George Kistiakowski and Isidor I. Rabi; appointment to President's Science Advisory Committee, 1960; Dwight D. Eisenhower. Government support of science; Stanford Linear Accelerator (SLAC); Joint Committee on Atomic Energy hearings (Ginzton, Varian Associates); avoiding the "Berkeley image" at SLAC. Also prominently mentioned are: Sue Gray Norton Alsalan, Carl David Anderson, Raymond Thayer Birge, Hugh Bradner, Henry Eyring, Don Gow, Alex E. S. Green, William Webster Hansen, Joel Henry Hildebrand, Giulo Lattes, Ernest Orlando Lawrence, Edwin Mattison McMillan, John Francis Neylan, Hans Arnold Panofsky, Ryokishi Sagane, Robert Gordon Sproul, Raymond L. Steinberger, Charles Hard Townes, Watters, Gian Carlo Wick, John Robert Woodyard, Dean E. Wooldridge, Fritz Zwicky; Federation of American Scientists, and Lawrence Radiation.
<p>Then, the project finally got authorized in 1961 — but again after a rather amusing set of coincidences. At that time the Stanford project was sort of known as the Republican project because Eisenhower had proposed it to a Democratic Congress. At that time there was a project that the Democrats wanted in Congress which the Republican administration did not want. This was for the Hanford Reactor to generate power into the electrical net, because it was considered to be socialized electricity by the Republicans, to have power generated by a production reactor. There was also good economic and technical reasons against such a project. It’s a very inefficient reactor, for power generation because of the low temperature at which the Hanford reactor operates. Anyway, the Democrats wanted it and the Republicans didn't.</p>
<p>On the other hand, the Stanford linear accelerator was considered to be a Republican proposal, opposed by the Democrats. So after a while the Republicans and Democrats in the Joint Committee essentially said, "If you approve Hanford, then we approve Stanford." So it ended up with both of them getting approved, and it was this entirely political infighting in the Congress which resulted in that last hurdle being passed. However in 1960, we already had very good confidence that it would go, because the three million dollars was fundamentally a signal to us that Congress really meant it but that they wanted to slap Mr. Eisenhower’s wrist for non-consultation.</p>
Slater leaves Harvard University for Massachusetts Institute of Technology in 1930 (Karl Compton) to build up Physics Department there; work on quantum electrodynamics. Growth of MIT Physics Department in the 1930s and 1940s, relations between experimentalists and theorists; discussion of works and publications during the 1930s. Changes in U.S. physics; overview of post-World War II physics to 1951, and reasons for establishing own research group; establishment of the Radiation Lab, 1940; magnetron work; Bell Labs visits, 1941-1942 and 1943-1945. Planning of postwar development in MIT Physics Department; transition from Radiation Lab to Research Lab of Electronics; formation of laboratories of nuclear science, acoustics, and spectroscopy; the Lincoln Laboratory, the Instrumental Lab; growth of nuclear branch of Physics Department; physics activity in general in postwar years, Solid State and Molecular Theory Group; the Compton Lab.; Materials Science Center established ca. 1958; interdepartmental and interdisciplinary work; visits to Brookhaven National Laboratory; Slater and Per Olov Lowdin’s Florida Group. Also prominently mentioned are: John Bardeen, W. Buechner, Arthur Holly Compton, Edward Uhler Condon, Jens Dahl, Robley Dunglison Evans, James Brown Fisk, George Harrison, Douglas Rayner Hartree, Raymond George Herb, Milton Stanley Livingston, Millard Manning, Jacob Millman, Wayne B. Nottingham, Isidor Isaac Rabi, Schafer, William Shockley, R. A. Smith, Julius Stratton, Robert Jamison Van de Graaff, John Hasbrouck Van Vleck, Eugene Paul Wigner; American Physical Society, California Institute of Technology, Florida State University, Lawrence Radiation Laboratory, Princeton University, University of Bristol, University of California at Berkeley, and University of Chicago.
Slater leaves Harvard University for Massachusetts Institute of Technology in 1930 (Karl Compton) to build up Physics Department there; work on quantum electrodynamics. Growth of MIT Physics Department in the 1930s and 1940s, relations between experimentalists and theorists; discussion of works and publications during the 1930s. Changes in U.S. physics; overview of post-World War II physics to 1951, and reasons for establishing own research group; establishment of the Radiation Lab, 1940; magnetron work; Bell Labs visits, 1941-1942 and 1943-1945. Planning of postwar development in MIT Physics Department; transition from Radiation Lab to Research Lab of Electronics; formation of laboratories of nuclear science, acoustics, and spectroscopy; the Lincoln Laboratory, the Instrumental Lab; growth of nuclear branch of Physics Department; physics activity in general in postwar years, Solid State and Molecular Theory Group; the Compton Lab.; Materials Science Center established ca. 1958; interdepartmental and interdisciplinary work; visits to Brookhaven National Laboratory; Slater and Per Olov Lowdin’s Florida Group. Also prominently mentioned are: John Bardeen, W. Buechner, Arthur Holly Compton, Edward Uhler Condon, Jens Dahl, Robley Dunglison Evans, James Brown Fisk, George Harrison, Douglas Rayner Hartree, Raymond George Herb, Milton Stanley Livingston, Millard Manning, Jacob Millman, Wayne B. Nottingham, Isidor Isaac Rabi, Schafer, William Shockley, R. A. Smith, Julius Stratton, Robert Jamison Van de Graaff, John Hasbrouck Van Vleck, Eugene Paul Wigner; American Physical Society, California Institute of Technology, Florida State University, Lawrence Radiation Laboratory, Princeton University, University of Bristol, University of California at Berkeley, and University of Chicago.