AIP congratulates John B. Goodenough, M. Stanley Whittingham and Akira Yoshino on being named the winners of this year's Nobel Prize in chemistry “for the development of lithium-ion batteries.”
Below you will find links to relevant works from AIP Publishing, made freely available until Dec. 31, 2019.
2019 Chemistry Nobel Prize Resources →
2019 Physics Nobel Prize Resources →
ARTICLES BY JOHN GOODENOUGH
Non-destructive reversible resistive switching in Cr doped Mott insulator Ca2RuO4: Interface vs bulk effects
Shida Shen, Morgan Williamson, Gang Cao, Jianshi Zhou, John Goodenough, and Maxim Tsoi
Journal of Applied Physics 122, 245108 (2017)
https://doi.org/10.1063/1.5008650
Localized Mg-vacancy states in the thermoelectric material Mg2−δSi0.4Sn0.6
Libin Zhang, Penghao Xiao, Li Shi, Graeme Henkelman, John B. Goodenough, and Jianshi Zhou
Journal of Applied Physics 119, 085104 (2016)
https://doi.org/10.1063/1.4942012
Temperature dependence of anisotropic magnetoresistance in antiferromagnetic Sr2IrO4
C. Wang, H. Seinige, G. Cao, J.-S. Zhou, J. B. Goodenough, and M. Tsoi
Journal of Applied Physics 117, 17A310 (2015)
https://doi.org/10.1063/1.4913300
Suppressing the bipolar contribution to the thermoelectric properties of Mg2Si0.4Sn0.6 by Ge substitution
Libin Zhang, Penghao Xiao, Li Shi, Graeme Henkelman, John B. Goodenough, and Jianshi Zhou
Journal of Applied Physics 117, 155103 (2015)
https://doi.org/10.1063/1.4918311
Effects of (Al,Ge) double doping on the thermoelectric properties of higher manganese silicides
Xi Chen, Annie Weathers, Daniel Salta, Libin Zhang, Jianshi Zhou, John B. Goodenough, and Li Shi
Journal of Applied Physics 114, 173705 (2013)
https://doi.org/10.1063/1.4828731
Improving Li2O2 conductivity via polaron preemption: An ab initio study of Si doping
Vladimir Timoshevskii, Zimin Feng, Kirk H. Bevan, John Goodenough, and Karim Zaghib
Appl. Phys. Lett. 103, 073901 (2013)
https://doi.org/10.1063/1.4818268
Magnetic and transport properties of layered LixCo0.5RhO3
Tsuyoshi Takami, Jinguang Cheng, and John B. Goodenough
Appl. Phys. Lett. 101, 102409 (2012)
https://doi.org/10.1063/1.4751337
Quantitative determination of Mn3+ content in LiMn1.5Ni0.5O4 spinel cathodes by magnetic measurements
Z. Moorhead-Rosenberg, D. W. Shin, K. R. Chemelewski, J. B. Goodenough, and A. Manthiram
Appl. Phys. Lett. 100, 213909 (2012)
https://doi.org/10.1063/1.4722927
Effect of high-pressure annealing on magnetoresistance in manganese perovskites
Y. H. Huang, M. Karppinen, H. Yamauchi, and J. B. Goodenough
Journal of Applied Physics 98, 033911 (2005)
https://doi.org/10.1063/1.1999832
Low-temperature Kerr spectroscopy on half-metallic Sr2FeMoO6
U. Rüdiger, M. Rabe, G. Güntherodt, H. Q. Yin, R. I. Dass, and J. B. Goodenough
Appl. Phys. Lett. 77, 2216 (2000)
https://doi.org/10.1063/1.1313810
Near-room-temperature tunneling magnetoresistance in a trilayer La0.67Sr0.33MnO3/La0.85Sr0.15MnO3/La0.67Sr0.33MnO3 device
H. Q. Yin, J.-S. Zhou, and J. B. Goodenough
Appl. Phys. Lett. 77, 714 (2000)
https://doi.org/10.1063/1.127095
Grain-boundary room-temperature low-field magnetoresistance in Sr2FeMoO6 films
H. Q. Yin, J.-S. Zhou, R. Dass, J.-P. Zhou, J. T. McDevitt, and John B. Goodenough
Journal of Applied Physics 87, 6761 (2000)
https://doi.org/10.1063/1.372833
Enhancement of room temperature magnetoresistance in double perovskite ferrimagnets
J. P. Zhou, R. Dass, H. Q. Yin, J.-S. Zhou, L. Rabenberg, and J. B. Goodenough
Journal of Applied Physics 87, 5037 (2000)
https://doi.org/10.1063/1.373240
Intra- versus intergranular low-field magnetoresistance of Sr2FeMoO6 thin films
H. Q. Yin, J.-S. Zhou, J.-P. Zhou, R. Dass, J. T. McDevitt, and John B. Goodenough
Appl. Phys. Lett. 75, 2812 (1999)
https://doi.org/10.1063/1.125158
Electron-lattice interactions in nickel-oxide perovskites
J. B. Goodenough, J.-S. Zhou, and B. Dabrowski
AIP Conference Proceedings 483, 388 (1999)
https://doi.org/10.1063/1.59639
Effect of tolerance factor and local distortion on magnetic properties of the perovskite manganites
J. P. Zhou, J. T. McDevitt, J. S. Zhou, H. Q. Yin, J. B. Goodenough, Y. Gim and Q. X. Jia
Appl. Phys. Lett. 75, 1146 (1999)
https://doi.org/10.1063/1.124624
Extrinsic giant magnetoresistance in chromium (IV) oxide, CrO2
S. Sundar Manoharan, D. Elefant, G. Reiss, J. B. Goodenough
Appl. Phys. Lett. 72, 984 (1998)
https://doi.org/10.1063/1.120616
Electronic structure of CMR manganites (invited)
John B. Goodenough
Journal of Applied Physics 81, 5330 (1997)
https://doi.org/10.1063/1.364536
Metal‐metal versus anion‐anion bonding in B31 structures
L. Henderson Lewis and J. B. Goodenough
Journal of Applied Physics 73, 5704 (1993)
https://doi.org/10.1063/1.353597
Crystal chemistry and mechanism in the high‐Tc copper oxides
John B. Goodenough
AIP Conference Proceedings 219, 26 (1991)
https://doi.org/10.1063/1.40273
Dependence of Tc on hole concentration in the superconductors Bi4Sr3Ca3−xYxCu4O16+δ
A. Manthiram and J. B. Goodenough
Appl. Phys. Lett. 53, 420 (1988)
https://doi.org/10.1063/1.100608
Vanishing of superconductivity at a transition from itinerant‐electron to small‐polaron conduction in nominal Bi4−xPbx(Sr3Ca)Ca2−xYxCu4O16
A. Manthiram and J. B. Goodenough
Appl. Phys. Lett. 53, 2695 (1988)
https://doi.org/10.1063/1.100548
Oxygen atom thermal vibration anisotropy in Ba0.87K0.13BiO3
J. P. Wignacourt, J. S. Swinnea, H. Steinfink, and J. B. Goodenough
Appl. Phys. Lett. 53, 1753 (1988)
https://doi.org/10.1063/1.100430
Structural and magnetic characterization of the lithiated iron oxide LixFe3O4
J. Fontcuberta, J. Rodríguez, M. Pernet, G. Longworth and J. B. Goodenough
Journal of Applied Physics 59, 1918 (1986)
https://doi.org/10.1063/1.336420
Photoelectrochemical properties of n‐type NiTiO3
P. Salvador, Claudio Gutiérrez, J. B. Goodenough
Journal of Applied Physics 53, 7003 (1982)
https://doi.org/10.1063/1.330047
Photoresponse of n‐type semiconductor NiTiO3
P. Salvador, Claudio Gutierrez, and J. B. Goodenough
Appl. Phys. Lett. 40, 188 (1982)
https://doi.org/10.1063/1.93003
X‐ray photoemission spectroscopy studies of Sn‐doped indium‐oxide films
John C. C. Fan and John B. Goodenough
Journal of Applied Physics 48, 3524 (1977)
https://doi.org/10.1063/1.324149
Pressure Variation of the Curie Temperature and Spontaneous Magnetization in Fe2P and Fe2P0.9As0.1
J. B. Goodenough, J. A. Kafalas, K. Dwight, N. Menyuk, and A. Catalano
AIP Conference Proceedings 10, 1355 (1973)
https://doi.org/10.1063/1.2946791
Magnetic and Optical Properties of the High‐ and Low‐Pressure Forms of CsCoF3
J. M. Longo, J. A. Kafalas, J. R. O'Connor, and J. B. Goodenough
Journal of Applied Physics 41, 935 (1970)
https://doi.org/10.1063/1.1659031
Covalency Criterion for Localized vs Collective Electrons in Oxides with the Perovskite Structure
John B. Goodenough
Journal of Applied Physics 37, 1415 (1966)
https://doi.org/10.1063/1.1708496
ARTICLES BY M. STANLEY WHITTINGHAM
Extending the limits of powder diffraction analysis: Diffraction parameter space, occupancy defects, and atomic form factors
Liang Yin, Gerard S. Mattei, Zhou Li, Jianming Zheng, Wengao Zhao, Fredrick Omenya, Chengcheng Fang, Wangda Li, Jianyu Li, Qiang Xie, Ji-Guang Zhang, M. Stanley Whittingham, Ying Shirley Meng, Arumugam Manthiram, and Peter G. Khalifah
Review of Scientific Instruments 89, 093002 (2018)
https://doi.org/10.1063/1.5044555
Uniform second Li ion intercalation in solid state ϵ-LiVOPO4
Linda W. Wangoh, Shawn Sallis, Kamila M. Wiaderek, Yuh-Chieh Lin, Bohua Wen, Nicholas F. Quackenbush, Natasha A. Chernova, Jinghua Guo, Lu Ma, Tianpin Wu, Tien-Lin Lee, Christoph Schlueter, Shyue Ping Ong, Karena W. Chapman, M. Stanley Whittingham, and Louis F. J. Piper
Appl. Phys. Lett. 109, 053904 (2016)
https://doi.org/10.1063/1.4960452
Reactivity and chemical modification of oxide superconductors
Wendy Gloffke, Masao Ohashi, Paul Schnier, Greg Moore, Michael Kellicutt, Masatsugu Suzuki, and M. Stanley Whittingham
AIP Conference Proceedings 273, 302 (1992)
https://doi.org/10.1063/1.43626
An NMR study of the alkali metal intercalation phase LixTiS2: Relation to structure, thermodynamics, and ionicity
B. G. Silbernagel and M. S. Whittingham
J. Chem. Phys. 64, 3670 (1976)
https://doi.org/10.1063/1.432731
Wideline NMR studies of ammonia intercalation complexes. I. TaS2 (NH3) and TiS2 (NH3)
B. G. Silbernagel, M. B. Dines, F. R. Gamble, L. A. Gebhard, and M. S. Whittingham
J. Chem. Phys. 65, 1906 (1976)
https://doi.org/10.1063/1.433285
Intercalation and lattice expansion in titanium disulfide
M. Stanley Whittingham and Arthur H. Thompson
J. Chem. Phys. 62, 1588 (1975)
https://doi.org/10.1063/1.430581
Measurement of Sodium Ion Transport in Beta Alumina Using Reversible Solid Electrodes
M. Stanley Whittingham and Robert A. Huggins
J. Chem. Phys. 54, 414 (1971)
https://doi.org/10.1063/1.1674623
PAPERS RELATED TO LI-ION BATTERIES
Inelastic hosts as electrodes for high-capacity lithium-ion batteries
Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suo
Journal of Applied Physics 109, 016110 (2011)
https://doi.org/10.1063/1.3525990
Fabrication of Li-intercalated bilayer graphene
K. Sugawara, K. Kanetani, T. Sato, and T. Takahashi
AIP Advances 1, 022103 (2011)
https://doi.org/10.1063/1.3582814
Fracture of electrodes in lithium-ion batteries caused by fast charging
Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suo
Journal of Applied Physics 108, 073517 (2010)
https://doi.org/10.1063/1.3492617
Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery
Kibum Kang, Hyun-Seung Lee, Dong-Wook Han, Gil-Sung Kim, Donghun Lee, Geunhee Lee, Yong-Mook Kang, and Moon-Ho Jo
Appl. Phys. Lett. 96, 053110 (2010)
https://doi.org/10.1063/1.3299006
Ab initio studies on atomic and electronic structures of black phosphorus
Yanlan Du, Chuying Ouyang, Siqi Shi, and Minsheng Lei
Journal of Applied Physics 107, 093718 (2010)
https://doi.org/10.1063/1.3386509
Lithium transport at silicon thin film: Barrier for high-rate capability anode
Bo Peng, Fangyi Cheng, Zhanliang Tao, and Jun Chen
J. Chem. Phys. 133, 034701 (2010)
https://doi.org/10.1063/1.3462998
Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes
Rui Huang, Xing Fan, Wanci Shen, and Jing Zhu
Appl. Phys. Lett. 95, 133119 (2009)
https://doi.org/10.1063/1.3238572
Silicon nanowires for rechargeable lithium-ion battery anodes
Kuiqing Peng, Jiansheng Jie, Wenjun Zhang, and Shuit-Tong Lee
Appl. Phys. Lett. 93, 033105 (2008)
https://doi.org/10.1063/1.2929373
Characterization of SnO2 nanowires as an anode material for Li-ion batteries
Z. Ying, Q. Wan, H. Cao, Z. T. Song, and S. L. Feng
Appl. Phys. Lett. 87, 113108 (2005)
https://doi.org/10.1063/1.2045550
The first in situ 7Li nuclear magnetic resonance study of lithium insertion in hard-carbon anode materials for Li-ion batteries
Michel Letellier, Frédéric Chevallier, Christian Clinard, Elzbieta Frackowiak, Jean-Noël Rouzaud, François Béguin, Mathieu Morcrette and Jean-Marie Tarascon
J. Chem. Phys. 118, 6038 (2003)
https://doi.org/10.1063/1.1556092
A system for performing simultaneous in situ atomic force microscopy/optical microscopy measurements on electrode materials for lithium-ion batteries
L. Y. Beaulieu, V. K. Cumyn, K. W. Eberman, L. J. Krause, and J. R. Dahn
Review of Scientific Instruments 72, 3313 (2001)
https://doi.org/10.1063/1.1388214