Higgs bosons

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Gordon Kane, Victor Weisskopf Distinguished Professor of Physics at the University of Michigan. He explains why came to hold a chair in Weisskopf’s honor and he describes his affiliation with the Leinweber Center for Theoretical Physics. Kane recounts his childhood in Minnesota and the opportunities that led to his enrollment in physics at MIT and his graduate work at Illinois to work with J.D. Jackson. He explains that the major topic in particle theory during his graduate work was understanding nucleon scattering and the significance of Geoff Chew’s bootstrap mechanism. Kane talks about his contribution to the discovery of the omega minus at Brookhaven and his research at the Rutherford Lab. He explains his decision to join the faculty at Michigan and his interest in group theory because of the advances made by Murray Gell-Mann. Kane describes the early work in the search for physics beyond the Standard Model, and he explains the value of string theory at the Planck scale. He discusses the possible new physics that would have been discovered at the SSC and why compactified M theory offers a plausible path to moving beyond the Standard Model. Kane explains why string theory is testable and why string theory predicts axions, he offers some possible candidates for dark matter and what compactified M theory offers cosmic inflation. At the end of the interview, Kane discusses his current interests in quark masses and charge leptons, he explains some of the advantages inherent in teaching at a large public university, and he describes why communicating science to popular audiences has always been important to him.

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with A.J. Stewart Smith, the Class of 1909 Professor of Physics, emeritus, at Princeton University, who also served as the university vice president for the Princeton Plasma Physics Laboratory. Smith begins the interview with an overview of his affiliations with SNOLAB, CERN, and Italian Nuclear and Particle Physics. He recaps the effects of the pandemic on experimental particle physics. Smith then summarizes his family history and his childhood in Canada, where he became interested in the sciences in high school. Smith recalls his undergraduate studies in physics at University of British Columbia, where he also earned a master’s degree, as well as his decision to pursue a PhD at Princeton. He describes working on the Princeton-Penn Accelerator with his advisor Pierre Piroue, and the subsequent offer of a fellowship at DESY working with Sam Ting on QED. Smith recounts his move back to Princeton to join the faculty, and he describes the “bipartisanship” between experimentalists and theorists at the time. He discusses the origins of the Chicago-Princeton collaboration at Fermilab, his involvement with E-787 experiment at Brookhaven, and his time as technical coordinator and spokesperson for the BaBar experiment. The interview concludes with Smith’s recollections of his time as Princeton’s first dean of research, as well as his reflections on times when theory has led experimentation, and vice versa.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Yifang Wang, Director of the Institute of High Energy Physics, Chinese Academy of Sciences. He describes the role of the Institute within the Chinese Academy, and he recounts his childhood in Nanjing, Jiangsu Province, in China. Wang discusses his undergraduate work in nuclear physics at Nanjing University and he discusses the opportunities to being chosen by Sam Ting to go to CERN. He discusses his graduate work at the University of Florence, where Ting had the L3 experiment, and he described his work going back and forth from CERN for six years, and his involvement in the Higgs search and excited leptons. Wang discusses his postgraduate work in tau polarization and some of the theoretical bases for testing the Standard Model. He describes his work on the AMS collaboration and the search for antimatter, and he describes his postdoctoral work in neutrino oscillations at Stanford. Wang discusses the opportunities leading to his offer from the Institute of High Energy Physics in Beijing and the prospect of shooting a neutrino beam. He discusses the unique ways that the Chinese government supports physics, and the importance of the Beijing Electron-Positron Collider and the search for glueballs. Wang describes his increasing responsibilities at the Institute leading to his directorship, and he discusses his current work on the Large Circular Collider and the future prospects of high energy physics in China. He describes his tenure as director of Juno and the origins of the Daya Bay experiment. At the end of the interview, Wang asserts that the future of elementary particle physics is through the Higgs for which new understandings of space and time will be achieved, and he emphasizes the importance of scientific collaboration and the benefits of competition as a key component in the future of American-Chinese relations.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Daniel R. Marlow, Evans Crawford Class of 1911 Professor of Physics, at Princeton University. Marlow recounts his childhood in Ontario and his father’s military appointment which brought his family to the United States when he was fourteen. He describes his undergraduate experience at Carnegie Mellon and the considerations that compelled him to remain for his graduate work in physics. Marlow describes his thesis research under the direction of Peter Barnes and his research visits to Los Alamos, Brookhaven, and JLab, and he surveys the theoretical advances that were relevant to his experimental work. He explains his decision to stay at CMU as a postdoctoral researcher and as an assistant professor, and he describes his interests which straddled the boundary between particle physics and nuclear physics. Marlow describes the opportunities leading to his faculty appointment at Princeton by way of the research in k+ and pi+nu nu-bar experiments at CERN. He discusses his involvement in planning for the SSC, and how the Gem collaboration was designed to find the Higgs and supersymmetry before the LHC. Marlow discusses the e787 experiment and the lesson gained that rare kaon decay experiments are more difficult than they appear at first glance. Marlow describes the origins of the Belle project in Japan at KEK and its relationship to BaBar, and he explains how finding the Higgs was the capstone to the Standard Model. He surveys the current state of play in experimental particle physics and why he encourages students to follow their interests without overly analyzing future trends in the field. At the end of the interview, Marlow describes his current interest in studying displaced vertices and long-lived particle searches, and he muses that toward the end of his career, he wants to become more of a “graduate student” so that he can focus more exclusively on the physics that is most compelling to him.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Sally Dawson, Senior Scientist at Brookhaven National Laboratory and head of the high energy theory group there. Dawson recounts her childhood in Cleveland where her father was a rocket scientist for NASA. She describes her undergraduate education at Duke and how she came to focus on physics. Dawson cites the formative influence of Howard Georgi during her graduate work on proton decay and precision calculations at Harvard. She discusses her postdoctoral research in the theory group at Fermilab and her focus on some of the theoretical implications of the Tevatron project. Dawson surveys the research on supersymmetry and the Higgs mass at that time, and she explains her decision to join the scientific staff at Brookhaven where Mike Creutz and Bill Marciano were doing research of interest to her. Dawson discusses her long-term efforts to search for new physics beyond the Standard Model and she describes her book the Higgs Hunter’s Guide. She surveys what is known and unknown about the Higgs boson, and she discusses the g-2 muon experiment at Brookhaven and its relation to the current experiment at Fermilab. Dawson explains the value of the Snowmass process in achieving a high-level and future-oriented view of where the field is headed, and why the discovery of the Higgs demonstrated the overall accuracy of the Standard Model. She surveys the new questions that can be probed following the Higgs discovery and the complementary nature of neutrino precision measurements for this research. At the end of the interview, Dawson discusses her outreach efforts to emphasize that particle theory is not “dead,” why she sees advisory work as a vital service to the field, and why over the course of her career, experimentalists have provided more guidance to theorists, and not vice-versa.

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, Elizabeth Simmons discusses: role as Executive Vice Chancellor (EVC) at UC San Diego; impact of COVID-19; current developments in the field that she finds exciting; family background and childhood; experiences as a woman in physics; M.Phil at Cambridge in Volker Heine’s group working on condensed matter theory; study of condensed matter theory at Harvard; Howard Georgi; work on models exploring electroweak symmetry breaking and quark masses; opinions on why SSC died and the impact on the field; collaboration with Cynthia Brossman on the Pathways K12 outreach project supporting girls’ involvement in STEM; research on the top quark; interest in supersymmetry and physics Beyond the Standard Model (BSM) using a Higgless model; papers with husband Sekhar Chivukula and others exploring the idea of a five-dimensional spacetime; leading Lyman Briggs College; MOOSE model; reaction to the discovery of the Higgs boson; post-Higgs work distinguishing which models can and can’t be consistent with the data; consulting work for the American Physical Society (APS) and the wider academic and scientific community on matters of equity, diversity, and inclusion (EDI); advocacy on behalf of the LGBTQ community; advisory work for the Center for High Energy Physics in China; collaborations at the Aspen Center for Physics to support EDI in the field; role creating career development workshops for women at the International Center for Theoretical Physics; work increasing EDI in curricula and faculty hiring; building cross-field collaboration at UCSD; collaboration with other EVCs in the UC system; current physics work on model building and how to get the most out of available data; and current work on graviton-graviton scattering. Toward the end of the interview, Simmons reflects on intersectionality and the value of diversity in science and discovery.

Interviewed by
David Zierler
Interview dates
February 15, March 29, May 12, 2021
Location
Video conference
Abstract

In this interview, Fabiola Gianotti, Director-General of CERN, reflects on being the first woman in this position and the multi-layered challenges of maintaining operations at CERN during the pandemic. She recounts her upbringing in Milan and the scientific influence of her father, who was a geologist. Gianotti describes her education at the University of Milan and her formative interactions with Carlo Rubbia at CERN. She describes her work on the LEP and ADELPH collaborations and how the cancellation of the SSC affected CERN. Gianotti narrates the origins of the LHC and parallel concentration on supersymmetry and she describes the ATLAS and CMS teams and her advisory work for P5 in the United States. She discusses her election and responsibilities as Spokesperson of ATLAS and she describes the careful process of detecting and analyzing the signals that confirmed the Higgs. Gianotti describes the unique opportunity to engage a global audience given the magnitude and interest in the discovery, and she explains LHC’s planning, post-Higgs, for new physics. She describes the shutdown period that started in 2013 and the circumstances to her being named Director-General in 2013. Gianotti surveys what has, and has not, been detected at the LHC over the past decade, and how dark matter searches at CERN are complementary to those using Xenon detectors. She conveys optimism about the high luminosity upgrade at the LHC and how she frequently operates in political realms given the international nature of CERN. At the end of the interview, Gianotti observes that current projects at the CERN are reminiscent of the buildup to the LHC, and why this bodes well for the future of experimental particle physics. 

Interviewed by
David Zierler
Interview dates
July 27 & August 2, 2020
Location
Video conference
Abstract

In this interview, Peter McIntyre, Mitchell-Heep professor of experimental physics at Texas A&M University, and president of Accelerator Technology Corporation discusses his career and achievements as a professor. McIntyre recounts his childhood in Florida, and he explains his decision to pursue physics as an undergraduate at the University of Chicago and the influence of his longtime hero Enrico Fermi. He discusses his interests in experimental physics and he explains his decision to stay at Chicago for graduate school, where he worked with Val Teledgi, during a time he describes as the last days of bubble chamber physics. McIntyre conveys his intense opposition to the Vietnam War and the extreme lengths he took to avoid being drafted, and his dissertation work on the Ramsey resonance in zero field. He describes Telegdi’s encouragement for him to pursue postdoctoral research at CERN where he worked with Carlo Rubbia on the Intersecting Storage Rings project. He describes his time as an assistant professor at Harvard and his work at Fermilab, and the significance of his research which disproved Liouville’s theorem. McIntyre describes the series of events leading to his tenure at Texas A&M, and he explains how his hire fit into a larger plan to expand improve the physics program there. He discusses the completion of the Tevatron at Fermilab and the early hopes for the discovery of the mass scale of the Higgs boson, and he describes the origins of the SSC project in Texas and the mutually exclusive possibility that Congress would fund the International Space Station instead. McIntyre describes the key budgetary shortfalls that essentially doomed the SSC from the start, his efforts in Washington to keep the project viable, and the technical shortcomings stemming from miscommunication and stove-piping of expertise. He describes his involvement in the discovery of the top quark and the fundamental importance of the CDF, DZero, and ATLAS collaborations. McIntyre discusses his achievements as a teacher to undergraduates and a mentor to graduate students, and he assesses the current and future prospects for ongoing discovery in high energy physics. At the end of the interview, McIntyre describes his current wide-ranging research interests, including his efforts to improve the entire diagnostic infrastructure in screening and early detection of breast cancer.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Feryal Ozel, professor of astronomy and physics at the University of Arizona. Ozel recounts her childhood and family background in Istanbul and how her interest in science was fostered both at home and at the all-girls international school she attended through 12th grade. She describes the opportunities that led to her enrollment at Columbia University for her undergraduate education, where she majored in physics and applied math and where Jacob Shaham influenced her interest in neutron stars. She describes a formative summer internship at CERN where she worked on supersymmetric decays of the Higgs boson, and a postgraduate year at the Niels Bohr Institute, before she began her graduate work at Harvard. Ozel discusses her thesis research on magnetars under the direction of Ramesh Narayan and she describes her postdoctoral position at the Institute for Advanced Study as a Hubble fellow. She describes the academic and family considerations that made Arizona an attractive option and she explains the mechanics behind funding from NASA and the NSF. Ozel describes her favorite physics classes to teach, how she sees her role as a mentor to women students and students of under-represented groups, and she surveys recent developments in neutron star astrophysics and the interaction of gas and black holes. She discusses her contributions to the Event Horizon collaboration, and she relates her ideas on the significance of seeing a photograph of a black hole without needing observational evidence to know that black holes exist. Ozel describes her motivations in serving in scientific advisory roles and the importance of science communication and how advances in computational power have revolutionized astrophysics. At the end of the interview, Ozel discusses the outstanding question mark about making gravity compatible with how we understand the subatomic world and how this serves as a starting point for future research oriented toward fundamental discovery, and why she is particularly interested in continuing to work on black hole imaging.