Magnetic monopoles

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Barry Barish, Linde Professor of Physics Emeritus at Caltech, where he retains a collaboration with LIGO, and Distinguished Professor of Physics at UC Riverside. Barish recounts his childhood in Los Angeles and emphasizes that sports were more important than academics to him growing up. He explains his decision to attend Berkeley as an undergraduate, where his initial major was engineering before he realized that he really loved physics, and where he was advised by Owen Chamberlain. Barish describes the fundamental work being done at the Radiation Lab and how he learned to work the cyclotron. He explains why Fermi became his life-long hero and why he decided to stay at Berkeley for graduate school, even though the school’s general policy required students to pursue their doctoral work elsewhere. Barish describes his graduate research under the direction of Carl Hemholz, and he explains how he developed a relationship with Richard Feynman which led to his postdoc and ultimately, his faculty appointment at Caltech. He discusses how his interest in neutrinos led to his work at Fermilab and why the big question at the time was how to discover the W boson. Barish describes his key interests in magnetic monopoles and neutrino oscillations, and he describes his involvement with the SSC project through a connection with Maury Tigner at Berkeley, which developed over the course of his collaborations with Sam Ting. He explains that his subsequent work with LIGO never would have happened had the SSC been viable, and he describes his early connection as a young student learning general relativity as a connecting point to LIGO. Barish describes his general awareness of what Rai Weiss had been doing prior to 1994 and he relates the state of affairs of LIGO at that point. He conveys the intensity of his involvement from 1994 to 2005 and he describes the skepticism surrounding the entire endeavor and what success would have looked like without any assurance that the experiment would actually detect gravitational waves. Barish describes the road to detection as one of incremental improvements to the instrumentation achieved over several years, including the fundamental advance of active seismic isolation. He narrates the day of the detection, and he surveys the effect that the Nobel Prize has had on the LIGO collaboration and its future prospects. Barish notes the promise that AI offers for the future of LIGO, and he prognosticates the future viability of the ILC. At the end of the interview Barish explains what LIGO has taught us about the universe, and what questions it will allow us to ask in the future as a result of its success. 

Interviewed by
David Zierler
Interview dates
February 26 and March 12, 2021
Location
Video conference
Abstract

Interview with John Preskill, Richard P. Feynman Professor of Theoretical Physics at Caltech, and Director of the Institute for Quantum Information and Matter at Caltech. Preskill describes the origins of IQIM as a research pivot from the initial excitement in the 1970s to move beyond Standard Model physics and to understand the origin of electroweak symmetry breaking. He emphasizes the importance of Shor’s algorithm and the significance of bringing Alexei Kitaev into the project. Preskill discusses the support he secured from the NSF and DARPA, and he recounts his childhood in Chicago and his captivation with the Space Race. He describes his undergraduate experience at Princeton and his relationship with Arthur Wightman and John Wheeler. Preskill explains his decision to pursue his thesis research at Harvard with the intention of working with Sidney Coleman, and he explains the circumstances that led to Steve Weinberg becoming his advisor. He discusses the earliest days of particle theorists applying their research to cosmological inquiry, his collaboration with Michael Peskin, and his interest in the connection of topology with particle physics. Preskill describes his research on magnetic monopoles, and the relevance of condensed matter theory for his interests. He explains the opportunities that led to his appointment to the Harvard Society of Fellows and his eventual faculty appointment at Harvard, his thesis work on technicolor, and the excitement surrounding inflation in the early 1980s. Preskill discusses the opportunities that led to his tenure at Caltech and why he started to think seriously about quantum information and questions relating to thermodynamic costs to computing. He explains the meaning of black hole information, the ideas at the foundation of Quantum Supremacy, and he narrates the famous story of the Thorne, Hawking, and Preskill bets. Preskill describes the advances in quantum research which compelled him to add “matter” to the original IQI project which was originally a purely theoretical endeavor. He discusses the fact that end uses for true quantum computing remain open questions, and he surveys IQIM’s developments over the past decade and the strategic partnerships he has pursued across academia, industry, and at the National Labs. Preskill surveys the potential value of quantum computing to help solve major cosmological mysteries, and why his recent students are captivated by machine learning. At the end of the interview, Preskill reflects on his intersecting interests and conveys optimism for future progress in understanding quantum gravity from laboratory experiments using quantum simulators and quantum gravity.