American Physical Society

Interviewed by
Greg Good
Interview date
Abstract

Edward Gerjuoy ws born in Brooklyn, New York, on May 19, 1918, of a Romanian immigrant mother and Russian immigrant father. He attended Thomas Jefferson High School, along with other classmates who became well-known physicists. He studied at City College of New York. He was minimally involved in the Young Communist League. He completed the Ph.D. in physics under J. Robert Oppenheimer at the University of California, Berkeley, in 1942. Gerjuoy discusses his teachers, professors, and fellow students. He describes the classroom atmosphere, the personalities, and the courses. Gerjuoy, who learned no calculus in high school, became a theoretical physicist, specializing in quantum mechanics. During World War II, Gerjuoy worked as a civilian scientist on anti-submarine warfare, ultimately leaving a Sonar Analysis Group under Lyman Spitzer. After the war, he taught at the University of Southern California, New York University, and the University of Pittsburgh. He also worked at Westinghouse Research Laboratory, General Atomic Laboratory, and directed a plasma research group at RCA Laboratories in New Jersey. At age 56, Gerjuoy decided to take a sabbatical and started a degree in law. While on leave from the University of Pittsburgh, he served as one of three judges on the Pennsylvania Environmental Hearing Board. He nevertheless remained active in the American Physical Society, especially on the Committee on the International Freedom of Scientists (CIFS) and the Panel on Public Affairs (POPA). He played a role in the Wen Ho Lee case regardin gnational security matters at Los Alamos. He was editor-in-chief of Jurimetrics Journal of Law, Science, and Technology for six years. His interest in recent years relates to quantum computing.

Interviewed by
Greg Good
Interview date
Abstract

Edward Gerjuoy ws born in Brooklyn, New York, on May 19, 1918, of a Romanian immigrant mother and Russian immigrant father. He attended Thomas Jefferson High School, along with other classmates who became well-known physicists. He studied at City College of New York. He was minimally involved in the Young Communist League. He completed the Ph.D. in physics under J. Robert Oppenheimer at the University of California, Berkeley, in 1942. Gerjuoy discusses his teachers, professors, and fellow students. He describes the classroom atmosphere, the personalities, and the courses. Gerjuoy, who learned no calculus in high school, became a theoretical physicist, specializing in quantum mechanics. During World War II, Gerjuoy worked as a civilian scientist on anti-submarine warfare, ultimately leaving a Sonar Analysis Group under Lyman Spitzer. After the war, he taught at the University of Southern California, New York University, and the University of Pittsburgh. He also worked at Westinghouse Research Laboratory, General Atomic Laboratory, and directed a plasma research group at RCA Laboratories in New Jersey. At age 56, Gerjuoy decided to take a sabbatical and started a degree in law. While on leave from the University of Pittsburgh, he served as one of three judges on the Pennsylvania Environmental Hearing Board. He nevertheless remained active in the American Physical Society, especially on the Committee on the International Freedom of Scientists (CIFS) and the Panel on Public Affairs (POPA). He played a role in the Wen Ho Lee case regardin gnational security matters at Los Alamos. He was editor-in-chief of Jurimetrics Journal of Law, Science, and Technology for six years. His interest in recent years relates to quantum computing.

Interviewed by
Greg Good
Interview date
Location
Convention Center, Baltimore, Maryland
Abstract

Edward Gerjuoy ws born in Brooklyn, New York, on May 19, 1918, of a Romanian immigrant mother and Russian immigrant father. He attended Thomas Jefferson High School, along with other classmates who became well-known physicists. He studied at City College of New York. He was minimally involved in the Young Communist League. He completed the Ph.D. in physics under J. Robert Oppenheimer at the University of California, Berkeley, in 1942. Gerjuoy discusses his teachers, professors, and fellow students. He describes the classroom atmosphere, the personalities, and the courses. Gerjuoy, who learned no calculus in high school, became a theoretical physicist, specializing in quantum mechanics. During World War II, Gerjuoy worked as a civilian scientist on anti-submarine warfare, ultimately leaving a Sonar Analysis Group under Lyman Spitzer. After the war, he taught at the University of Southern California, New York University, and the University of Pittsburgh. He also worked at Westinghouse Research Laboratory, General Atomic Laboratory, and directed a plasma research group at RCA Laboratories in New Jersey. At age 56, Gerjuoy decided to take a sabbatical and started a degree in law. While on leave from the University of Pittsburgh, he served as one of three judges on the Pennsylvania Environmental Hearing Board. He nevertheless remained active in the American Physical Society, especially on the Committee on the International Freedom of Scientists (CIFS) and the Panel on Public Affairs (POPA). He played a role in the Wen Ho Lee case regardin gnational security matters at Los Alamos. He was editor-in-chief of Jurimetrics Journal of Law, Science, and Technology for six years. His interest in recent years relates to quantum computing.

Interviewed by
Lillian Hoddeson
Interview date
Location
Montecito, California
Abstract

Family background and early education; University of Oklahoma; graduate work and electrical engineering at California Institute of Technology. Bell Laboratories, 1936-1946; colloquium and other social structures; early solid state physics work; Fletcher’s group with Foster Nix and William Shockley; war years, work on radar bomb sights; postwar years. Move to Hughes Aircraft Company, 1946-1953; formation and accomplishments of Thompson-Ramo-Wooldridge after 1953; current interests. Also prominently mentioned are: Joseph A. Becker, R. S. Bowen, Walter Houser Brattain, Oliver E. Buckley, Joseph Ashby Burton, Karl Kelchner Darrow, Clinton Joseph Davisson, Paul Sophus Epstein, Conyers Herring, C. N. Hickman, Howard Hughes, J. B. Johnson, Edward Karrouse, Mervin J. Kelly, G. A. Kelsall, J. W. McRae, Robert Andrews Millikan, J. Robert Oppenheimer, Gerald Leondus Pearson, Don Quarles, Simon Ramo, Rhine, Duane Roller, Hellvar Skaade, William Ralph Smythe, Leopold Stokowski, Richard Chase Tolman, Charles Hard Townes, Howell J. Williams, Jewel Wurtzbaugh, Fritz Zwicky; American Physical Society, Massachusetts Institute of Technology, United States Air Force, and Western Electric Company.

Interviewed by
Katherine Sopka
Interview date
Location
Wellesley, Massachusetts
Abstract

Family background, education, and emergence of scientific orientation. Undergraduate years at Wellesley College (1912-1916); description of physics department. Assistant examiner in U.S. Patent Office during World War I. At MIT under E.B. Wilson as graduate student and laboratory assistant, then lab instructor (1920-24). Returned to MIT for doctoral work in 1928. Mathematical physics thesis under Norbert Wiener, while teaching at Wellesley. Depression years brought teaching position at Wilson College (1930-43), used Wellesley as model. Work on Zeeman Pattern earns her Guggenheim Fellowship (1949-50) at MIT and European labs. World War II years as head of OSRD British Report Section. Returned to Wilson (1945-56), worked part-time at National Science Foundation (1953-56). Retirement years including affiliation with U.S. Army and spectroscopic work at Harvard College Observatory. Comments on women in physics in U.S., her own opportunities, and teaching in general.

Interviewed by
Charles Weiner
Interview date
Location
Leonia, New Jersey
Abstract

World War I developments in electronics in relation to French and British Armies; post-war revitalization of Physics Department at Columbia Univ.: Pupin Laboratory; effect of quantum mechanics; growth of nuclear physics; graduate physics during the 1920’s and Depression years; Pegram’s relation to APS; personal satisfactions in professional career.

Interviewed by
Charles Weiner
Interview date
Location
Slater's office, Massachusetts Institute of Technology
Abstract

Slater leaves Harvard University for Massachusetts Institute of Technology in 1930 (Karl Compton) to build up Physics Department there; work on quantum electrodynamics. Growth of MIT Physics Department in the 1930s and 1940s, relations between experimentalists and theorists; discussion of works and publications during the 1930s. Changes in U.S. physics; overview of post-World War II physics to 1951, and reasons for establishing own research group; establishment of the Radiation Lab, 1940; magnetron work; Bell Labs visits, 1941-1942 and 1943-1945. Planning of postwar development in MIT Physics Department; transition from Radiation Lab to Research Lab of Electronics; formation of laboratories of nuclear science, acoustics, and spectroscopy; the Lincoln Laboratory, the Instrumental Lab; growth of nuclear branch of Physics Department; physics activity in general in postwar years, Solid State and Molecular Theory Group; the Compton Lab.; Materials Science Center established ca. 1958; interdepartmental and interdisciplinary work; visits to Brookhaven National Laboratory; Slater and Per Olov Lowdin’s Florida Group. Also prominently mentioned are: John Bardeen, W. Buechner, Arthur Holly Compton, Edward Uhler Condon, Jens Dahl, Robley Dunglison Evans, James Brown Fisk, George Harrison, Douglas Rayner Hartree, Raymond George Herb, Milton Stanley Livingston, Millard Manning, Jacob Millman, Wayne B. Nottingham, Isidor Isaac Rabi, Schafer, William Shockley, R. A. Smith, Julius Stratton, Robert Jamison Van de Graaff, John Hasbrouck Van Vleck, Eugene Paul Wigner; American Physical Society, California Institute of Technology, Florida State University, Lawrence Radiation Laboratory, Princeton University, University of Bristol, University of California at Berkeley, and University of Chicago.

Interviewed by
Joan Warnow and Robert Williams
Interview date
Location
University of Pennsylvania, Philadelphia, Pennsylvania
Abstract

Childhood and high school education; undergraduate eduction at Massachusetts Institute of Technology, Bachelor's thesis with John Slater on energy level spacings in the multiple structure of transition metal atoms; graduate education at Urbana, Illinois, first paper under John Bardeen on the problem of transport of electrons bound to surfaces in semiconductors (Bardeen, David Pines); doctoral thesis on superconductivity, theoretical issues relevant to it; Leon Cooper's contributions, field theory, the bound state; Bardeen wins the Nobel Prize, emotional letdowns related to slow results of research; Stevens Conference on the many-body problem and American Physical Society Meeting, 1957; application of the Tomonaga variational technique, work on it with Cooper and Bardeen, problems with the second order phase transition, Bardeen's solution of the wave function; refinements of the new theory of superconductivity; feelings about working with Bardeen and Cooper; reactions of the scientific community to the new theory (Niels Bohr, Norman Ramsey); views on scientific creativity; the square dance analogy of the B-C-S theory; the Nobel Prize, 1972; American and Soviet competition for solution of superconductivity; objections to the theory based on gauge invariance properties; aftermath of discovery and Nobel Prize. Also prominently mentioned are: Jane Bardeen, John Bardeen, Nikolay N. Bogoliubov, Bohr family, Keith Allan Brueckner, Eli Burstein, Butler, Leon Cooper, Richard Phillips Feynman, Dave Frisch, Frölich, Ernest Guillemin, Douglas Rayner Hartree, Werner Heisenberg, David Hilbert, George F. Koster, Fritz London, Francis Eugene Low, Arkadii Beinusovich Migdal, David Pines, Léon Rosenfeld, Blat Schatloff, Ann Schrieffer, Frederick Seitz, Charles Slichter, Gregor Wentzel; Institute for Theoretical Physics (Copenhagen), and Niels Bohr Institutet.

Interviewed by
Joan Warnow
Interview date
Location
Philadelphia, Pennsylvania
Abstract

Childhood and high school education; undergraduate eduction at Massachusetts Institute of Technology, Bachelor's thesis with John Slater on energy level spacings in the multiple structure of transition metal atoms; graduate education at Urbana, Illinois, first paper under John Bardeen on the problem of transport of electrons bound to surfaces in semiconductors (Bardeen, David Pines); doctoral thesis on superconductivity, theoretical issues relevant to it; Leon Cooper's contributions, field theory, the bound state; Bardeen wins the Nobel Prize, emotional letdowns related to slow results of research; Stevens Conference on the many-body problem and American Physical Society Meeting, 1957; application of the Tomonaga variational technique, work on it with Cooper and Bardeen, problems with the second order phase transition, Bardeen's solution of the wave function; refinements of the new theory of superconductivity; feelings about working with Bardeen and Cooper; reactions of the scientific community to the new theory (Niels Bohr, Norman Ramsey); views on scientific creativity; the square dance analogy of the B-C-S theory; the Nobel Prize, 1972; American and Soviet competition for solution of superconductivity; objections to the theory based on gauge invariance properties; aftermath of discovery and Nobel Prize. Also prominently mentioned are: Jane Bardeen, John Bardeen, Nikolay N. Bogoliubov, Bohr family, Keith Allan Brueckner, Eli Burstein, Butler, Leon Cooper, Richard Phillips Feynman, Dave Frisch, Frölich, Ernest Guillemin, Douglas Rayner Hartree, Werner Heisenberg, David Hilbert, George F. Koster, Fritz London, Francis Eugene Low, Arkadii Beinusovich Migdal, David Pines, Léon Rosenfeld, Blat Schatloff, Ann Schrieffer, Frederick Seitz, Charles Slichter, Gregor Wentzel; Institute for Theoretical Physics (Copenhagen), and Niels Bohr Institutet.

Interviewed by
Joan Bromberg
Interview date
Location
Stanford University
Abstract

Early family life and early education in Toronto during the Depression. Interest in radio engineering; math-physics scholarship to University of Toronto 1937. During World War II (from 1941) teaching Army, Air Force, Navy students in basic physics. Masters degree with Arnold Pitt during that period. Work with G. Byers on microwave guide antennas. Poor graduate education at Toronto. Interest in nuclear physics; constructs atomic beam light source; 'his definition of a diatomic molecule. Receives Carbide and Carbon Chemicals Corporation post-doc fellowship (Rabi); work with C. Townes at Columbia University on application of microwave spectroscopy to organic chemistry; comments on faculty and co-workers at Columbia. To Bell Labs to work on superconductivity in Stan Morgan's group in early 1950's. Work with Lewis and Matthias on the intermediate state nuclear quadrupole resonance. The Clad Rob Laser; work atmosphere at Bell Labs; decision to leave Bell for Stanford. Works with graduate students; Emmett, Holzrichter on flashlamps; solid state spectroscopy. Role in Optical Society of America and American Physical Society.