Cornell University

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Michal Lipson, Eugene Professor in the Departments of Electrical Engineering and Applied Physics at Columbia University. She recounts her childhood as the daughter of a prominent physicist whose work took the family to Israel and then in Brazil, where she spent her formative years in São Paulo. Lipson explains her decision to pursue a degree in physics at Technion in Israel, where she remained to complete her graduate studies in semiconductor physics under the direction of Elisha Cohen. She describes her postdoctoral research at MIT in material science with Lionel Kimerling, and she explains the opportunities that led to her first faculty position at Cornell. Lipson describes her dual interest in pursuing basic science research and industry-relevant work. She discusses her work in photonics which led to her MacArthur fellowship and the significance of her study of slot waveguides and optical amplification in silicon. Lipson describes her subsequent work in nonlinear photonics and high-power lasers, and she explains the opportunity leading to her current position at Columbia, where she has focused on two-dimensional materials. At the end of the interview, Lipson emphasizes the fundamental importance of oscillators that have always informed her research.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Thomas Appelquist, Eugene Higgins Professor of Physics at Yale University. Appelquist recounts his upbringing in rural Iowa and then Indiana, where he attended Catholic high school. He describes his undergraduate experience at Illinois Benedictine College and explains his attraction to attend a small school for college. Appelquist discusses his decision to attend Cornell for his PhD, and recalls that, relative to others in his cohort who went to larger schools, he had the most catching up to do in quantum mechanics. He explains the development of his thesis topic under the direction of Don Yennie, which focused on aspects of renormalization theory using the Feynman parametric approach. Appelquist contextualizes some of the broader questions in quantum field theory and quantum electrodynamics at this time, and he describes the opportunities that led him to SLAC for his postdoctoral research. He describes his interests there as focused on theories of the weak interactions, and he describes his initial faculty appointment at Harvard where he joined the particle theory group led by Shelly Glashow and Sidney Coleman. Appelquist discusses his close collaboration with Helen Quinn on how to renormalize Yang-Mills theories, and he explains his decision to take a tenured position at Yale in consideration of the culture at Harvard, where the prospects of tenure were minimal. He describes the revolutionary discoveries of asymptotic freedom, QCD, and the “November Revolution” at SLAC and Brookhaven at the time. Appelquist describes his research and administrative activities to advance the particle theory group at Yale, and his overall efforts to improve the department as chair and in particular building up the condensed matter theory group. He discusses his tenure as Dean of the Graduate School and his long-term involvement with the Aspen Center. At the end of the interview, Appelquist describes his current interests in lattice gauge theory and explains why he expects that physics will see double beta decay in the next generation of experiments.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Murdock Gilchriese, Senior Physicist at Lawrence Berkeley National Lab. He discusses his contribution to the major project, LUX-ZEPLIN (LZ) and the broader search for dark matter, he recounts his parents’ missionary work, and his upbringing in Los Angeles and then in Tucson. Gilchriese describes his early interests in science and his undergraduate experience at the University of Arizona, where he developed is expertise in experimental high energy physics. He discusses his graduate work at SLAC where he worked with Group B headed by David Leith, and he describes his research in hadron spectroscopy. Gilchriese explains his postdoctoral appointment at the University of Pennsylvania sited at Fermilab to do neutrino physics before he accepted his first faculty position at Cornell to help create an e+/e- collider and the CLEO experiment. He discusses the inherent risk of leaving Cornell to work for the SSC project with the central design group, and then as head of the Research Division. Gilchriese describes his subsequent work on the solenoidal detector and his transfer to Berkeley Lab to succeed George Trilling and to join the ATLAS collaboration. He explains the migration of talent and ideas from the SSC to CERN and discusses the research overlap of ATLAS and CMS and how this accelerated the discovery of the Higgs. Gilchriese describes his next interest in getting into cosmology and searching for dark matter as a deep underground science endeavor, and he explains why advances in the field have been so difficult to achieve. At the end of the interview, Gilchriese describes his current work on CMB-S4, his advisory work helping LBNL navigate the pandemic, and he reflects on the key advances in hardware that have pushed experimental physics forward during his career.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Malcolm Roy Beasley, Sidney and Theodore Rosenberg Professor of Applied Physics, Emeritus, at Stanford. Beasley recounts his passion for basketball in high school and the opportunities that led to his undergraduate study at Cornell, where he describes his focus on engineering physics as just the right blend of fundamental and applied research. He describes his relationship with Watt Webb, who would become his graduate advisor, and the origins of BCS theory. Beasley discusses his work taking magnetization measurements on type-II superconductors and his thesis research on flux creep and resistance. He discusses his postdoctoral appointment working with Mike Tinkham at Harvard and the developments leading to reduced dimensional superconductivity. Beasley explains the technological implications in the fluctuations of the order parameter, and he describes the speed with which Harvard made him a faculty offer. He discusses the circumstances that led to him joining the faculty at Stanford, his immediate connection with Ted Geballe, and his work on A15 superconductors. Beasley explains the significance of the 1976 Applied Superconductivity Conference and the important work in the field coming out of the Soviet Union at the time. He conveys the excitement regarding amorphous silicon and how the KT transition in superconductors became feasible. Beasley describes his interest in thermal fluctuation limits and coupled oscillators, and he describes Aharon Kapitulnik’s arrival at Stanford and the origins of the “KGB” group. He describes the group’s work on alloyed-based model systems and his idea to study high-resistance SNS Josephson junctions. Beasley explains “Pasteur’s quadrant” and why the KGB group was so well-attuned to dealing with it, and he discusses the impact of computational theory on the field and specifically that of Josephson junctions on digital electronics. He surmises what quantum superconductivity might look like, and he describes his work as dean and as founding director of GLAM, and some of the inherent challenges in the “trifurcation” at Stanford between the Departments of Physics and Applied Physics and SLAC. Beasley discusses his leadership at APS and the issue of corporate reform, and he explains his role in the Schön commission and what it taught him about scientific integrity. At the end of the interview, Beasley reflects on some of the “forgotten heroes” in the long history of superconductivity, he attempts to articulate his love for physics, and he explains why the achievements of the KGB group represent more than the sum of its parts.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Maury Tigner, Hans A. Bethe Professor of Physics Emeritus at Cornell. He discusses the origins of the "Handbook of Accelerator Physics and Engineering," and he provides perspective on the prospects of China's contributions for the future of high energy physics. Tigner recounts his childhood as the son of parents in the clergy, and he discusses his undergraduate education in physics at RPI and his interest in working on the betatron. He explains the opportunities that led to his acceptance to the graduate program in physics at Cornell to work under the direction of Bob Wilson and Boyce McDaniel. Tigner explains his decision to remain at Cornell for his postdoctoral research to assume responsibility of the 2.2 GeV Synchrotron, and he describes his initial research at DESY in Germany. He describes his work developing superconducting radiofrequency technology, and the NSF role in supporting this effort. Tigner discusses his work on the design team for the SSC and the impact of the cancellation of ISABELLE, and he narrates Panofsky's decision to replace him with Roy Schwitters. He describes his return to Cornell, and he conveys that despite the structural challenges, there is much to remain optimistic about in high energy physics.

Interviewed by
Joanna Behrman
Interview dates
November 3 & 10, 2020, January 20 & February 9, 2021
Location
Video conference
Abstract

Interview with Janice Button-Shafer, retired American physicist. Button-Shafer recounts her childhood in the Boston area, where her father worked as an engineer. She recalls the influence of her father on her interests in music, math and physics. Button-Shafer discusses her decision to study Engineering Physics at Cornell University, despite it being very uncommon for women to go into science. She discusses her summer jobs at MIT, Cornell Aeronautical Lab and Oak Ridge, as well as her experience writing for The Cornell Engineer magazine. Button-Shafer recounts her Fulbright Fellowship in Germany at the Max Planck Institute in Gottingen, focusing on neutron physics. She reflects on the political landscape during this time and how it affected science in Europe. Button-Shafer then recounts her decision to attend Berkeley for graduate school where she completed her thesis on parity violation while teaching courses such as quantum mechanics. She describes her research at the time at Lawrence Berkeley Lab and SLAC and discusses her work on thermonuclear energy and fusion reactors. She then turns to her move to University of Massachusetts Amherst and her eventual retirement and continuation of work at SLAC. Button-Shafer also talks about her marriage to mathematician John Shafer and the challenges of raising three children, one of whom battled cancer, during her demanding career as a scientist. Throughout the interview, Button-Shafer shares numerous anecdotes about the struggles of being a woman in a male-dominated field, including the discrimination and misogyny she endured throughout her career. She shares many stories of famous physicists she worked with over the years, including Owen Chamberlain, Emilio Segre, Luis Alvarez, Karl Heinz Beckhurts, and Edward Teller. Button-Shafer also shares her passion for the history of physics and relays many of her favorite historical tidbits involving scientists such as Lise Meitner, Marie Curie, Werner Heisenberg, and others. Her love of chamber music and classical music also comes up throughout the interview, as she reflects on her various musical accomplishments.

Interviewed by
Michael Duncan
Interview date
Abstract

The interview begins with a discussion of Giallorenzi’s youth, including his education and anecdotes about his early jobs, as well as his undergraduate and graduate work at Cornell University and his work on the scattering of laser light in Chung Tang’s laboratory there. Giallorenzi recounts his first laboratory job at GT&E Laboratories working on laser displays and arc lamps, and his move soon thereafter to the Quantum Optics Branch at the Naval Research Laboratory in Washington, D.C. He discusses his work at NRL on fiber optics applied to sensor technology, including acoustic and magnetic sensors, and to pathbreaking R&D in microwave photonics. He also discusses his move to leading the then-newly created NRL Optical Techniques Branch, the departure of staff working on nuclear fusion to Livermore, and new R&D directions within his branch that were necessitated by the termination of work on liquid crystals. He recalls his relationship with NRL Director of Research Alan Berman, his promotion to Optical Sciences Superintendent, his division’s focus on high-power lasers, including MIRACL, and his decision to terminate a branch within the division. He further discusses his relationship with the Pentagon, status as a member of the Senior Executive Service, and experiences as a high-level administrator. The interview concludes with discussions of other technologies NRL worked on, the balance between basic and applied research at the lab, awards Giallorenzi has received, and his work with advisory panels, the Naval Center for Space Technology, and the Optical Society of America (now Optica).

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .