University of Arizona

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Murdock Gilchriese, Senior Physicist at Lawrence Berkeley National Lab. He discusses his contribution to the major project, LUX-ZEPLIN (LZ) and the broader search for dark matter, he recounts his parents’ missionary work, and his upbringing in Los Angeles and then in Tucson. Gilchriese describes his early interests in science and his undergraduate experience at the University of Arizona, where he developed is expertise in experimental high energy physics. He discusses his graduate work at SLAC where he worked with Group B headed by David Leith, and he describes his research in hadron spectroscopy. Gilchriese explains his postdoctoral appointment at the University of Pennsylvania sited at Fermilab to do neutrino physics before he accepted his first faculty position at Cornell to help create an e+/e- collider and the CLEO experiment. He discusses the inherent risk of leaving Cornell to work for the SSC project with the central design group, and then as head of the Research Division. Gilchriese describes his subsequent work on the solenoidal detector and his transfer to Berkeley Lab to succeed George Trilling and to join the ATLAS collaboration. He explains the migration of talent and ideas from the SSC to CERN and discusses the research overlap of ATLAS and CMS and how this accelerated the discovery of the Higgs. Gilchriese describes his next interest in getting into cosmology and searching for dark matter as a deep underground science endeavor, and he explains why advances in the field have been so difficult to achieve. At the end of the interview, Gilchriese describes his current work on CMB-S4, his advisory work helping LBNL navigate the pandemic, and he reflects on the key advances in hardware that have pushed experimental physics forward during his career.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Marlan Scully, Distinguished University Professor and Burgess Chair at Texas A&M and Distinguished Research Academician at Baylor University. The interview begins with Scully recounting his early experience contracting COVID-19 and how that informed his research into the virus. Then he describes growing up in Wyoming and recalls not being very interested in school until he fell in love with calculus while attending community college. Scully talks about his studies in physics at the University of Wyoming before eventually transferring to Rensselaer Polytechnic. He then discusses his decision to move to Yale to work with Willis Lamb on laser physics. Scully recounts his assistant professorship at MIT and the opportunity at University of Arizona, where he was involved with starting their Optical Sciences Center. He talks about his subsequent joint position between University of New Mexico and Max Planck Institute for Quantum Optics, as well as his work with Air Force weapons labs on laser applications. Scully details the events leading to his position at Texas A&M and the inception of the Institute for Quantum Studies, and his ongoing affiliations with Princeton. At the end of the interview, Scully reflects on the interplay between theory and experimentation throughout his career and in laser physics specifically, as well as the technological advances that have propelled laser research forward.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Paul Schechter, the William A. M. Burden Professor of Astrophysics, Emeritus, at MIT discusses his time as an undergraduate student at Cornell University under the mentorship of Al Silverman and his involvement working on the Cornell synchrotron, as well as Silverman’s influence on his decision to attend Caltech for graduate school. Schechter discusses his collaboration with Bill Press on the issue of dark matter and the eventual creation of their model, the Extended Press-Schechter. He also details how studying the infall of galaxies toward the Virgo Cluster, and the subsequent paper he contributed to on the topic, were the most exciting part of his time working at the Kitt Peak National Observatory. Schechter describes his later interests in gravitational lensing and his efforts to create higher quality images for Magellan telescopes. Lastly, he discusses his desire to find the stellar mass fraction in galaxies.

Interviewed by
David Zierler
Interview date
Location
video conference
Abstract

Interview with Brian Schmidt, Distinguished Professor and Vice Chancellor and President of the Australian National University. Schmidt surveys the Covid crisis from his perspective at ANU, and he describes his current interests in cosmology. He recounts his childhood in Montana and Alaska in support of his father’s career in fisheries biology, and he describes his undergraduate education as a dual major in physics and astronomy at the University of Arizona. Schmidt describes the opportunities that led to his graduate work at Harvard, where he worked under the direction of Bob Kirshner and where he met and developed a formative relationship with Adam Riess on supernovae research. He explains his decision to remain at Harvard for his postdoctoral research and he narrates the origins of the High-Z collaboration and its interactions with Saul Perlmutter’s team at Berkeley. Schmidt describes his postdoctoral appointment at ANU as leader of High-Z, and he describes how the collaboration discovered the accelerating expansion of the universe and the process of communicating its findings. He describes the “buzz” leading to the Nobel Prize and his subsequent focus on the SkyMapper project. Schmidt discusses his responsibilities as Vice Chancellor which overlap strongly with Australian national policy, and he describes how he sees the reality of climate change in his 21 years of grape growing. At the end of the interview, Schmidt reflects on how the High-Z discovery has changed astronomy broadly, and he conveys a sense of wonder at the accidental nature by which the team arrived at its discovery.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Cherry Murray, Professor of Physics and Deputy Director of Research at Biosphere 2 at the University of Arizona. She describes some of the logistical challenges in managing Biosphere 2 during the pandemic, and she considers how current political and environmental crises perhaps make the research at Biosphere 2 all the more urgently needed. Murray reflects on how her work at the DOE has been an asset for Biosphere 2 and she recounts her early childhood, first in Japan and then Pakistan during her father’s postings for the Foreign Service. She describes her high school education in Virginia and then South Korea and the opportunities that led to her undergraduate admission at MIT, where she became close with Millie Dresselhaus. Murray explains her decision to remain at MIT for graduate work to conduct research in surface physics under the direction of Tom Greytak. She discusses her subsequent work at Bell Labs on negative positron work functions and where she rose to become Vice President, and she provides context for some of the exciting developments in superconductivity. Murray explains the circumstances and impact of the breakup of Bell Labs, and she reflects on her contributions on surface enhanced Raman scattering during her tenure. She discusses her work with Ernest Moniz, the circumstances of her being named Deputy Director for Science and Technology at Livermore Lab, she describes her tenure at Harvard and the development of the Division of Engineering and Applied Sciences, and her experiences as Commissioner of the BP Deepwater Horizon Oil Spill. At the end of the interview, Murray discusses the development of Biosphere 2, some of its early stumbles, and the vast research value it promises for the long term.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Kyle Myers, Director of the Division of Imaging, Diagnostics, and Software Reliability in the FDA Center for Devices in Radiological Health. Myers recounts her childhood and the many moves her family made in support of her father's career in engineering management for General Electric, and she describes her father's formative influence and encouragement for her to pursue a career in science. She describes her college course work in physics at Occidental and Caltech, and she describes her decision to pursue a degree in optical sciences at the University of Arizona. She describes her work at the Jet Propulsion Lab and how this experience focused her interest on optics. Myers discusses working with her graduate advisor Harry Barrett on human perception and radiological imaging, and the importance of the research support she received from Kodak. She describes her postdoctoral work at Corning developing long-distance optical fibers, and she explains the circumstances leading to her career focus in medical imaging research at the FDA. Myers discusses the administrative evolution of the relevant offices and research centers at the FDA over the course of her career, and she discusses some of the major technological advances and her role in their development, including CT imaging, MRIs, and mammography screening. She describes some of the partnerships in the trade industry and across the federal interagency process that serve as important partners in her work, and she explains the adjudication process when a company is at odds with an FDA review of a given device. At the end of the interview Myers conveys her interest in the future prospects of digital pathology and the benefits it promises in disease detection and treatment.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Feryal Ozel, professor of astronomy and physics at the University of Arizona. Ozel recounts her childhood and family background in Istanbul and how her interest in science was fostered both at home and at the all-girls international school she attended through 12th grade. She describes the opportunities that led to her enrollment at Columbia University for her undergraduate education, where she majored in physics and applied math and where Jacob Shaham influenced her interest in neutron stars. She describes a formative summer internship at CERN where she worked on supersymmetric decays of the Higgs boson, and a postgraduate year at the Niels Bohr Institute, before she began her graduate work at Harvard. Ozel discusses her thesis research on magnetars under the direction of Ramesh Narayan and she describes her postdoctoral position at the Institute for Advanced Study as a Hubble fellow. She describes the academic and family considerations that made Arizona an attractive option and she explains the mechanics behind funding from NASA and the NSF. Ozel describes her favorite physics classes to teach, how she sees her role as a mentor to women students and students of under-represented groups, and she surveys recent developments in neutron star astrophysics and the interaction of gas and black holes. She discusses her contributions to the Event Horizon collaboration, and she relates her ideas on the significance of seeing a photograph of a black hole without needing observational evidence to know that black holes exist. Ozel describes her motivations in serving in scientific advisory roles and the importance of science communication and how advances in computational power have revolutionized astrophysics. At the end of the interview, Ozel discusses the outstanding question mark about making gravity compatible with how we understand the subatomic world and how this serves as a starting point for future research oriented toward fundamental discovery, and why she is particularly interested in continuing to work on black hole imaging.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with John K. Delaney, Senior Imaging Scientist at the National Gallery of Art. He discusses the datasets he has been analyzing during the pandemic, and he recounts his childhood in Boston. Delaney describes his experience at Rockefeller University and his interest in phototherapies and measuring porphyrins under the direction of Dave Mauzerall. He discusses his postdoctoral research at the University of Arizona to study rhodopsin molecules and following the changes in protein structure after excitation by light. Delaney describes his interests in biophysics and his subsequent postdoctoral position at Johns Hopkins as an NIH fellow working in the lab of Sriram Subramaniam, before taking a job in industry as an optical engineer. He explains the circumstances of his initial involvement at the National Gallery of Art and the Gallery’s realization of the value of spectroscopy for analysis and preservation of paintings. Delaney describes how he built an expertise on hyperspectral imaging. He explains why the Gallery supported this work and how a global community developed for this field. He explains the value of his work for art authentication and the opportunities he has pursued in public outreach. At the end of the interview, Delaney explains some of the key physics concepts that inform his work, and he describes his ambition to write a book on reflectance imaging spectroscopy of paintings.

Interviewed by
David Zierler
Interview date
Location
Remote Interview
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Thomas C. Blum, Professor of Physics at the University of Connecticut. Blum recounts his childhood in Reno, Nevada and he describes his early interests in math and science. He describes his undergraduate work in aeronautical and astronomical engineering at the University of Washington. Blum discusses his job focusing on computational fluid dynamics at Boeing after college and he explains his decision to pursue a Ph.D. in physics at the University of Arizona. He describes his graduate work in lattice gauge theory studying under Doug Toussaint. Blum discusses his postdoctoral work at Brookhaven, where he continued to work on lattice gauge theory, and he describes his decision to join the faculty at UConn. He describes his ongoing interests in chiral symmetry, g-2 and QCD research, and he conveys his excitement over possible future breakthroughs in hadronic vacuum polarization. At the end of the interview, Blum conveys how much fundamental work remains to be done in physics, and as an example he raises what remains an open-ended question: what is the real structure of the proton?

Interviewed by
William Thomas
Interview date
Location
ETH, Zurich, Switzerland
Abstract

In this interview, Kolumban Hutter discusses topics such as: his work at ETH Zurich; his research in glaciology; graduate degrees at Cornell University in theoretical and applied mechanics; Hans Ziegler; Hans Rothlisberger; Peter Kasser; ice plates; Daniel Vischer; John Nye; John Glen; thermodynamics; Andrew Fowler; Leslie Moreland; International Glaciological Society; hydrodynamics; Richard Sebass; fluid mechanics; physical limnology; visiting professorship at University of Arizona in Tucson; Terry Hughes; ice sheets and shelves; teaching at Darmstadt University of Technology; Ernst Becker; Reinhard Calov; Mary Williams; cold-temperate transition surface (CTS); global climate models; and working at Academia Sinica, Taiwan.