Interviewed by
David Zierler
Interview dates
June 29, July 5, July 19, July 26, August 2, August 9, August 16, 2020
Video conference

Series of seven interview sessions with Carver Mead, Gordon and Betty Moore Professor Emeritus at Caltech. Mead recounts his childhood in California, and he describes the impact of watching his father’s career in the electric power industry. He credits his schoolteachers for encouraging his early interests in math and science, and he explains why attending Caltech as an undergraduate was an easy choice for him because he felt immediately welcomed during his first visit. He describes what it was like to learn quantum mechanics from Linus Pauling, and he explains that his decision to major in electrical engineering stemmed from the fact that applied physics was shunned in the physics department because Murray Gell-Mann referred to it as “squalid state physics.” Mead describes his decision to stay at Caltech for graduate school, and he explains how he became interested in semiconductors and transistors and what would become the origins of “device physics” and how his dissertation research contributed to these developments. He describes his developing understanding that the future of electronics would be in low power, high-performance devices and why he would be best positioned to foster this future as a faculty member at Caltech. Mead describes his collaborations and interest in industry labs including IBM, RCA, and Bell, and he describes his initial and then longtime work with Gordon Moore. He discusses the value of RF transmitters in 1960s-era communications technology and the prospects of satellite telecommunications at the dawn of the space age. Mead describes the origins of VSLI technology, word processors, and microcomputers, and he describes his collaboration with Lynn Conway and the process that went into the classic textbook they coauthored. He describes his research using the human mind as a source of inspiration to push electronics and microprocessors to the next level, and he explains the value of bouncing ideas off of Feynman over lunch. Mead describes the singular potential of his student and collaborator Misha Mahowald, and the value of his work with Arnold Beckman. He discusses the several companies that were spun out of his research in electronics and biophysics, and he describes his work on cameras with Michihiro Yamaki and the learning curve associated with research culture in Japan. Mead offers his perspective on the need to update the debates between Einstein and Bohr in the wake of recent developments in physics, and he explains the intellectual origins of his text Collective Electrodynamics. He explains why scientific debates can take on philosophical or even religious dynamics, and he discusses the origins of G4V and how to think of gravitational attraction as an analogy to electromagnetic interaction. Relatedly, Mead describes his work with Kip Thorne and his involvement with the LIGO endeavor, and he explains why the line between science and engineering is fuzzier than is commonly understood. He explains the significance of the Shapiro Delay, he surmises that the mystery of Dark Energy is sourced in the fact that physics is approaching the problem in the wrong way, and he explains why physics has become hamstrung in its pursuit of mathematizing physical reality ahead of experimental guidance. Mead explains that his views are rooted in his ability to think in pictures, as opposed to abstract symbols, and that the field needs to be more welcoming and inclusive to those who may see math as a barrier to working in physics at a high level. At the end of the interview, Mead describes his interest in current challenges with electric grid infrastructure, he explains why he has championed the work of women in science throughout his career, and he strikes an optimistic note that science always has and will continue, to provide solutions to the world’s most pressing problems.

Interviewed by
Joan Bromberg
Interview date

Summary of work and development of light emitting diodes (LEDs) and diode lasers done in the 1950s and early 1960s at Sylvania Research Laboratories, and at General Telephone and Electronics Laboratories, 1961-1964. Semiconducting Compounds Group investigates intermetallic compounds, especially GaAs and HgTe in the 1950s. Group joins the Battelle Memorial Institute group, 1957. Group effort devoted to GaAs from 1958. Group leaders discussed, Don Wahl, Henry Minden, and Sumner Mayburg. Work prompted in part by Heinrich Welker's 1952 report on preparation and properties of III-V compounds. Description of research proposals, notebook entries, reports, and memos pertaining to invention of GaAs laser, GaAs diffuse diode lasing, 1961-1962, and the cylindrical GaAs laser diode, 1963; GT&E activity in light emitting diodes and laser diodes reduced by 1964. Also prominently mentioned are: K. Arnold, J. Birman, R. Harrigan, Paul Keck, M. J. Massoulie, J. L. Pankove, B. Smith, and Otto Weinrich.