Neutrons

Interviewed by
Catherine Westfall
Interview date
Location
Argonne National Laboratory
Abstract

In this interview, John Carpenter discusses topics such as: his graduate school work in nuclear engineering; his early professorship at the University of Michigan; going to the Reactor Testing Station in Idaho to learn about neutron scattering; beginning work at Argonne National Laboratory; developing the first-ever pulsed spallation neutron sources equipped for neutron scattering, ZING-P and ZING-P'; development and implemention of the intense pulsed neutron source (IPNS); becoming an advisor at Oak Ridge National Laboratory; spallation neutron source (SNS); his retirement; slow neutron scattering; Motoharu Kimura and winning the Clifford G. Shull prize.

Interviewed by
Catherine Westfall
Interview date
Location
Argonne National Laboratory
Abstract

In this interview, John Carpenter discusses topics such as: his graduate school work in nuclear engineering; his early professorship at the University of Michigan; going to the Reactor Testing Station in Idaho to learn about neutron scattering; beginning work at Argonne National Laboratory; developing the first-ever pulsed spallation neutron sources equipped for neutron scattering, ZING-P and ZING-P'; development and implemention of the intense pulsed neutron source (IPNS); becoming an advisor at Oak Ridge National Laboratory; spallation neutron source (SNS); his retirement; slow neutron scattering; Motoharu Kimura and winning the Clifford G. Shull prize.

Interviewed by
Catherine Westfall
Interview date
Location
Argonne National Laboratory
Abstract

In this interview, John Carpenter discusses topics such as: his graduate school work in nuclear engineering; his early professorship at the University of Michigan; going to the Reactor Testing Station in Idaho to learn about neutron scattering; beginning work at Argonne National Laboratory; developing the first-ever pulsed spallation neutron sources equipped for neutron scattering, ZING-P and ZING-P'; development and implemention of the intense pulsed neutron source (IPNS); becoming an advisor at Oak Ridge National Laboratory; spallation neutron source (SNS); his retirement; slow neutron scattering; Motoharu Kimura and winning the Clifford G. Shull prize.

Interviewed by
Charles Weiner
Interview date
Location
Varian Physics Building, Stanford University, California
Abstract

Recollections of physics community in 1920s and early 1930s; opportunities for physics work in Europe; awareness of political climate in Germany (1932); relationship with Werner Heisenberg at University of Leipzig; awarded Rockefeller Fellowship to study at University of Rome; contacts with physicists after Leipzig and before Rome; John Von Neumann's list of refugee physicists; offered appointment to position at Stanford University; visit to University of Copenhagen and Niels Bohr's advice to accept appointment; relinquishing of second half of fellowship; influenced by Bohr, Heisenberg and others; Bloch's influence on Enrico Fermi leading to theory of neutrino; met by Gregory Breit on arrival in New York; initial teaching duties at Stanford; theoretical physics in America in 1934; distinctions between Europe and America on theory vs. experiment; seminars with J. Robert Oppenheimer; first interest in experimental work; early research on neutrons; recollections of 1935 Michigan Summer School; started Stanford Summer School in 1936 with George Gamow as first visitor (Fermi 1937, Isidor Isaac Rabi 1938, Victor F. Weisskopf 1939); origin of idea of neutron polarization; 1936 paper proposing neutron magnetic moment experiment; 1937 Galvani Conference in Bologna; use of Berkeley 37-inch cyclotron for magnetic moment experiment; decision to build cyclotron at Stanford; construction supported by Rockefeller Foundation; initial involvement with Manhattan Project; recollections of receiving news of fission; neutron work for Manhattan Project at Stanford; marriage in 1940; work on implosion at Los Alamos Scientific Laboratory; reasons for leaving Los Alamos; work on radar at Harvard University; first ideas on measuring nuclear magnetic resonance (NMR); helpfulness of radar experience in NMR work; William W. Hansen and the klystron; fate of the first Stanford cyclotron; knowledge of Edward M. Purcell's work on NMR; publication of initial results, 1946-1948; Rabi and Polykarp Kusch's work on molecular beams; development of NMR field; Nobel Prize award; association with CERN, 1954; contributions of greatest impact.

Interviewed by
Charles Weiner
Interview date
Location
Cornell University
Abstract

Natural radioactivity; ideas of nuclear constitution, size in 1920s; Gamow-Condon-Gurney theory of alpha decay 1928; discovery of neutron 1932; Cambridge as a center of research 1933; early theories of nuclear forces; analysis of short-range nuclear forces 1935-40; reasons for writing Rev. Mod. Phys. review articles 1935-37 and detailed review of articles' contents; beta decay and the neutrino hypothesis; application of group-theoretic methods to nuclear physics 1936-37; compound nucleus model 1936; nuclear models in general (compound nucleus, evaporation, liquid drop, direct interaction, statistical); contemporary knowledge of nuclear physics 1938-39; stellar energy production; energy limit on cyclotron; accelerators and theoreticians; nuclear physics at Los Alamos; post-war conferences; origins and development of the shell model of the nucleus; many-body theory in nuclear physics; current algebras in particle physics; origins and development of the optical model; of the collective model; autobiographical comments on political, social, scientific conditions in Germany and England in early 1930s ; nuclear studies at Cornell after the war; building the H-bomb; the Oppenheimer hearings; work as a consultant 1950-1970; involvement with PSAC 1956; views on disarmament; receipt of 1967 Nobel Prize.

Interviewed by
Charles Weiner
Interview date
Location
Cornell University
Abstract

Natural radioactivity; ideas of nuclear constitution, size in 1920s; Gamow-Condon-Gurney theory of alpha decay 1928; discovery of neutron 1932; Cambridge as a center of research 1933; early theories of nuclear forces; analysis of short-range nuclear forces 1935-40; reasons for writing Rev. Mod. Phys. review articles 1935-37 and detailed review of articles' contents; beta decay and the neutrino hypothesis; application of group-theoretic methods to nuclear physics 1936-37; compound nucleus model 1936; nuclear models in general (compound nucleus, evaporation, liquid drop, direct interaction, statistical); contemporary knowledge of nuclear physics 1938-39; stellar energy production; energy limit on cyclotron; accelerators and theoreticians; nuclear physics at Los Alamos; post-war conferences; origins and development of the shell model of the nucleus; many-body theory in nuclear physics; current algebras in particle physics; origins and development of the optical model; of the collective model; autobiographical comments on political, social, scientific conditions in Germany and England in early 1930s ; nuclear studies at Cornell after the war; building the H-bomb; the Oppenheimer hearings; work as a consultant 1950-1970; involvement with PSAC 1956; views on disarmament; receipt of 1967 Nobel Prize.

Interviewed by
Charles Weiner and Jagdish Mehra
Interview date
Location
Cornell University
Abstract

Natural radioactivity; ideas of nuclear constitution, size in 1920s; Gamow-Condon-Gurney theory of alpha decay 1928; discovery of neutron 1932; Cambridge as a center of research 1933; early theories of nuclear forces; analysis of short-range nuclear forces 1935-40; reasons for writing Rev. Mod. Phys. review articles 1935-37 and detailed review of articles' contents; beta decay and the neutrino hypothesis; application of group-theoretic methods to nuclear physics 1936-37; compound nucleus model 1936; nuclear models in general (compound nucleus, evaporation, liquid drop, direct interaction, statistical); contemporary knowledge of nuclear physics 1938-39; stellar energy production; energy limit on cyclotron; accelerators and theoreticians; nuclear physics at Los Alamos; post-war conferences; origins and development of the shell model of the nucleus; many-body theory in nuclear physics; current algebras in particle physics; origins and development of the optical model; of the collective model; autobiographical comments on political, social, scientific conditions in Germany and England in early 1930s ; nuclear studies at Cornell after the war; building the H-bomb; the Oppenheimer hearings; work as a consultant 1950-1970; involvement with PSAC 1956; views on disarmament; receipt of 1967 Nobel Prize.

Interviewed by
Charles Weiner
Interview date
Location
Florence, Italy
Abstract

Family background; early interest in physics; chance meeting with Enrico Fermi in youth and early friendship with Emilio Segrè; enrolling in physics at University of Rome; recollections of Orso M. Corbino; 1931 Rome Conference on Nuclear Physics; 1934 visit to Cambridge with Segrè; transition from spectroscopy to nuclear physics work at Rome; reaction to discovery of neutron; Ettore Majorana's work; slow neutron experiments; Fermi's approach toward theory and experiment; failure to discover fission; break-up of Rome group; 1936 trip to America; construction of two accelerators at Rome; 1939 trip to America; decision to discontinue fission experiments at Rome; usefulness of Hans A. Bethe's review articles; style of Rome group; physics elsewhere in Italy during 1930s; contacts with physicists outside Rome during 1930s; Italian physics during the war; postwar concern with elementary particles; recollections of Fermi in postwar period; work considered personally satisfying. Also prominently mentioned are: Herbert Anderson, Gilberto Bernardini, Torkild Bjerge, Patrick Maynard Stuart Blackett, Niels Henrik David Bohr, James Chadwick, Conversi, Otto Robert Frisch, George Gamow, Ettore Majorana, Pancini, Oreste Piccioni, George Placzek, Franco D. Rasetti, Westcott; Accademia Nazionale (Italy), Cavendish Laboratory, Columbia University, Conference on Nuclear Physics (1931 : Rome, Italy), Istituto superiore di sanità, and University of California at Berkeley, CA.

Interviewed by
Charles Weiner
Interview date
Location
Florence, Italy
Abstract

Family background; early interest in physics; chance meeting with Enrico Fermi in youth and early friendship with Emilio Segrè; enrolling in physics at University of Rome; recollections of Orso M. Corbino; 1931 Rome Conference on Nuclear Physics; 1934 visit to Cambridge with Segrè; transition from spectroscopy to nuclear physics work at Rome; reaction to discovery of neutron; Ettore Majorana's work; slow neutron experiments; Fermi's approach toward theory and experiment; failure to discover fission; break-up of Rome group; 1936 trip to America; construction of two accelerators at Rome; 1939 trip to America; decision to discontinue fission experiments at Rome; usefulness of Hans A. Bethe's review articles; style of Rome group; physics elsewhere in Italy during 1930s; contacts with physicists outside Rome during 1930s; Italian physics during the war; postwar concern with elementary particles; recollections of Fermi in postwar period; work considered personally satisfying. Also prominently mentioned are: Herbert Anderson, Gilberto Bernardini, Torkild Bjerge, Patrick Maynard Stuart Blackett, Niels Henrik David Bohr, James Chadwick, Conversi, Otto Robert Frisch, George Gamow, Ettore Majorana, Pancini, Oreste Piccioni, George Placzek, Franco D. Rasetti, Westcott; Accademia Nazionale (Italy), Cavendish Laboratory, Columbia University, Conference on Nuclear Physics (1931 : Rome, Italy), Istituto superiore di sanità, and University of California at Berkeley, CA.

Interviewed by
Charles Weiner and Barry Richman
Interview date
Location
Lawrence Radiation Laboratory, Berkeley, California
Abstract

Early education in physics, University of Chicago 1930’s; high-energy particle counter; discovery of positron; discovery of neutrons; neutron experiments; reminiscences of Berkeley; Foundation support of research; 60-inch cyclotron building cloud chambers; neutron spectroscopy; neutron time-of-flight; magnetic moment of the neutron: transuraniun elements; announcement of fission; Tizard Mission; war research work; building of a betatron; effect of war techniques on post-war research; cyclotron work 1947; impressions of present day nuclear physics 1966.