Atomic bomb

Interviewed by
Charles Weiner
Interview date
Location
American Institute of Physics, New York City, New York
Abstract

Career in nuclear physics, chiefly through 1939; describes differences in atmosphere among the Universities of Vienna, Berlin, London and Copenhagen; his switch from mathematics to physics at Vienna; work at University of Berlin on a grant, with Peter Pringsheim, before going to Hamburg to work with Otto Stern; with Hitler laws in effect, leaves for position with Patrick M. S. Blackett at Birkbeck College, 1933; then to Niels Bohr's Institute, until 1939; anecdotes about working on neutron experiments and nuclear models in Copenhagen; recounts how he and Lise Meitner explained fission, and memorandum with Rudolf Peierls on bomb possibilities; brief comments on postwar career.

Interviewed by
Charles Weiner
Interview date
Location
Altadena, California
Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by
Charles Weiner
Interview date
Location
Altadena, California
Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by
Charles Weiner
Interview date
Location
Altadena, California
Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by
Charles Weiner
Interview date
Location
Altadena, California
Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by
Patrick Catt
Interview date
Location
Haverford College
Abstract

In this interview, William Davidon discusses his political and social activism and its relationship to his scientific career. Topics discussed include: Albert Einstein; Norman Thomas; Purdue University; Marvin Goldberger; University of Chicago; atmospheric atomic bomb testing; Cold War; JASON group; Federation of American Scientists; American Friends Service Committee; American Physical Society; Adlai Stevenson; Morton Hamermesh; Haverford College; Hans Ekstein; Fay Ajzenberg-Selove; Committee for Nonviolent Action (CNVA); Pugwash Conferences on Science and World Affairs; Science for the People; Russ Stetler; Society for Social Responsibility in Science (SSRS); Mal Benjamin; Vietnam War protests; A. J. Muste; Oscar Handlin; Dan Berrigan; Union of Concerned Scientists; Henry Kissinger.

Interviewed by
Maurice Wilkins
Interview date
Abstract

Relation of the individual to the whole; California Institute of Technology (1939-1940); negative experience at Caltech; interest in Chinese and Japanese culture; Thesis – calculate scattering of light from a nebular gas cloud; University of California Berkeley (1941-1943); political interests and activity including Marxism, socialism, communism; better social, educational and natural environment at Berkeley; compute scattering of protons from deutrons [sic]; Lawrence Radiation Laboratory (1943-1946); electrostatic focusing, electric arc, nature of plasma, particle spin; effects of the atomic bombs on science and society; Research associate for J. Robert Oppenheimer (1946-1947); superconductivity; intuitive problem solving frowned upon by scientists; disillusionment with scientists; Princeton University Institute for Advanced Study (1947-1950); wrote Quantum Theory; structure of elementary particles; renormalization problem; meeting of theoretical physicists in the Pocono Mountains circa 1948, attended by notable scientists including Julian Schwinger, Victor Weisskopf, Niels Bohr, J. Robert Oppenheimer, Richard Feynman; hierarchy of scientists; end of his U.S. career.

Interviewed by
David DeVorkin
Interview date
Abstract

In this interview, James Gilbert Baker discusses: his family and childhood; William Marshall Bullitt; Harlow Shapley; University of Louisville; Walter L. Moore; American Association of Variable Star Observers (AAVSO); Richard Prager; Harvard University; Bart Bok; Otto Struve; A. Pannekoek; Cecilia Payne Gaposchkin; Ted Sterne; Don Menzel; E. Bright Wilson; Leon Campbell; Lawrence Aller; Rudolph Langer; Henry Norris Russell; S. Chandrasekhar; Joe Boyce; George Harrison; optics; Leo Goldberg; Harvard Society of Fellows; Ivan A. Getting; atomic bomb; Lise Meitner; Niels Bohr; R. W. Wood; aerial photography; Ted Dunham; Fred Whipple.