Quarks

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, Michael Turner discusses his life and career. topics include: Kavli Foundation; Kavli Institute for Cosmological Physics; Fred Kavli; Aspen Center for Physics; Rand Corporation; California Institute of Technology (Caltech); Robbie Vogt; Ed Stone; Barry Barish; SLAC National Accelerator Laboratory; B.J. Bjorken; University of Chicago; Dave Schramm; Kip Thorne; Fermi Institute / University of Chicago Institute for Nuclear Studies; Bob Wagoner; University of California, Santa Barbara; Larry Smarr; Dan Goldin; quarks-to-cosmos study; National Science Foundation; Rita Colwell; Advanced LIGO; Atacama Large Millimeter Array (ALMA); IceCube South Pole Neutrino Observatory; Department of Energy; Argonne National Laboratory; Paul Steinhardt.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Wit Busza, Francis L. Friedman Professor of Physics Emeritus at MIT. He recounts his birth in Romania as his family was escaping Poland at the start of World War II, and his family's subsequent moves to Cyprus and then to British Palestine, where he lived until he was seven, until the family moved to England. He describes the charitable circumstances that allowed him to go to Catholic boarding school, his early interests in science, and the opportunities that led to his undergraduate education in physics at University College in London, where he stayed on for his PhD while doing experiments at CERN working with Franz Heymann. Busza describes the development of spark chambers following the advances allowed by bubble chambers, and his thesis research using the Chew-Low extrapolation to calculate the probability that the proton is a proton plus a pi-zero. He describes meeting Martin Perl and the opportunities that led to his postdoctoral position at SLAC, which he describes in the late 1960s as being full of brilliant people doing the most exciting physics and where he focused on rho proton cross-sections. Busza describes meeting Sam Ting at SLAC which led to Busza's faculty appointment at MIT, where he discovered his talent for teaching. He discusses the complications associated with the discovery of the J/psi and his developing interest in relativistic heavy ion physics, the E178 project at Fermilab to examine what happens when high energy hadrons collide, and the E665 experiment to study quark propagation through nuclear matter. Busza describes the import of the RHIC and PHOBOS collaborations, and he discusses his return to SLAC to focus on WIC and SLD. He describes the global impact of the LHC and CERN, and his satisfaction at being a part of what the DOE called the best nuclear physics group in the country. In the last part of the interview, Busza reflects on the modern advances in atomic and condensed matter physics, which were inconceivable for him to imagine at the beginning of his career, he describes the considerations leading to his retirement, and why, if could re-live his career, he would think harder about being a theorist.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Geoffrey West, Shannan Distinguished Professor at the Santa Fe Institute. West provides a brief history of SFI as a collaborative idea between Murray Gell-Mann, Phil Anderson, and David Pines, and he explains the funding sources that launched the Institute. He recounts his childhood in England and his family’s Jewishly-observant household. West describes his switch from math to physics as an undergraduate at Cambridge and his interest in becoming involved in the origins of SLAC at Stanford. He discusses Panofsky and the “Monster Accelerator,” and studying fold factors of the triton and helium-3 nuclei under the direction of Leonard Schiff. West describes his subsequent postdoctoral work at Cornell and the formative influence of Ken Wilson, and his next position at Harvard where he pursued research on the quark proton model into a kind of a covariant framework. West explains his decision to join the faculty back at Stanford, he conveys the excitement at SLAC in deep inelastic research, and he provides a backdrop of the work that would become the “November Revolution” in 1974. He describes the importance of meeting Peter Carruthers and his reasons for transferring to the theory group at Los Alamos. West discusses his moral conflict working at a Lab with such close ties to nuclear weapon research, and he credits the Manhattan Project as the intellectual source for the Lab’s multidisciplinary approach. West discusses how the culture at Los Alamos served as a prototype for SFI, and how at that point he had migrated intellectually from high energy physics to string theory, and how both organizations encouraged the kind of multidisciplinary approach that encouraged his interests in biological populations. He describes his tenure as SFI president and his developing interest in sustainability, he prognosticates on what the SFI education model could contribute to post-pandemic higher education, and he explains how the pandemic has influenced his views on the future of cities. At the end of the interview, West describes his current interest in biological lifespans and he reflects on the extent to which is unorthodox career trajectory could serve as a model for scientists who will increasingly work in realms less bounded by strict departmental divisions.

Interviewed by
David Zierler
Interview dates
July 27 & August 2, 2020
Location
Video conference
Abstract

In this interview, Peter McIntyre, Mitchell-Heep professor of experimental physics at Texas A&M University, and president of Accelerator Technology Corporation discusses his career and achievements as a professor. McIntyre recounts his childhood in Florida, and he explains his decision to pursue physics as an undergraduate at the University of Chicago and the influence of his longtime hero Enrico Fermi. He discusses his interests in experimental physics and he explains his decision to stay at Chicago for graduate school, where he worked with Val Teledgi, during a time he describes as the last days of bubble chamber physics. McIntyre conveys his intense opposition to the Vietnam War and the extreme lengths he took to avoid being drafted, and his dissertation work on the Ramsey resonance in zero field. He describes Telegdi’s encouragement for him to pursue postdoctoral research at CERN where he worked with Carlo Rubbia on the Intersecting Storage Rings project. He describes his time as an assistant professor at Harvard and his work at Fermilab, and the significance of his research which disproved Liouville’s theorem. McIntyre describes the series of events leading to his tenure at Texas A&M, and he explains how his hire fit into a larger plan to expand improve the physics program there. He discusses the completion of the Tevatron at Fermilab and the early hopes for the discovery of the mass scale of the Higgs boson, and he describes the origins of the SSC project in Texas and the mutually exclusive possibility that Congress would fund the International Space Station instead. McIntyre describes the key budgetary shortfalls that essentially doomed the SSC from the start, his efforts in Washington to keep the project viable, and the technical shortcomings stemming from miscommunication and stove-piping of expertise. He describes his involvement in the discovery of the top quark and the fundamental importance of the CDF, DZero, and ATLAS collaborations. McIntyre discusses his achievements as a teacher to undergraduates and a mentor to graduate students, and he assesses the current and future prospects for ongoing discovery in high energy physics. At the end of the interview, McIntyre describes his current wide-ranging research interests, including his efforts to improve the entire diagnostic infrastructure in screening and early detection of breast cancer.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Sheldon Glashow, Professor of Physics Emeritus at Harvard University and Professor of Physics Emeritus at Boston University, reflects on his career and Nobel Prize winning work. He discusses his childhood friendship with Steve Weinberg and his passion for science from a young age. He reflects on his decision to attend Cornell University for undergrad and details the physics curriculum at the time. Glashow describes his time as a graduate student at Harvard University studying under Julian Schwinger. He discusses his time as a post-doc at the Institute for Theoretical Physics in Copenhagen working on the SU(2)XU(1) theory, which would later win him a Nobel prize in 1979. He speaks about working with Murray Gell-Mann while at Caltech and their collaboration on a paper together. Glashow details being hired as a full professor at Harvard University. He discusses his frequent collaboration with Alvaro De Rujula. He discusses the concept of string theory and how it has evolved over the years. He discusses the loss of the superconducting super collider and reflects on where particle and theoretical physics may be today had it been built. Lastly, Glashow reflects on his goals for "Inference: International Review of Science", of which he is the editor-at-large.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Coward reflects on his time at Stanford University and the formation of SLAC. Coward discusses his time as an undergraduate student at Cornell University. He describes how his desire to study under Pief Panofsky influenced his decision to attend Stanford University for graduate school and how Panofsky later encouraged him to work for SLAC. Additionally, he continually reflects upon the role of Panofsky throughout his life and his leadership in the formation of SLAC. Coward details how his engineering background helped him construct a spectrometer facility at SLAC. He details his various sabbaticals at CERN and reflects upon the different work cultures that existed at different labs. He discusses his contributions to a study on quarks that later earned a Nobel Prize in 1990. Coward Reflects on the development of the Spectrometer Facilities Group and his role in putting the team together. He discusses a paper the group published in 1975 on polarized electron-electron scattering at GeV energies that proved the quark model of the proton. Lastly, Coward discusses his experience living in Palo Alto and the progress made in the area during his time there, such as the installation of bike paths and the undergrounding of power lines.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Phiala Shanahan, assistant professor of physics in the Center for Theoretical Physics at MIT. Shanahan explains the administrative relationship between the department and the Center, and she recounts her childhood in Adelaide, Australia, her experiences at an all-girls school and the benefits this conferred in nurturing her interest in science. She discusses her concentration in computational physics and the mass of the H-dibaryon at the University of Adelaide and her decision to stay on with her undergraduate advisors, Anthony Thomas and Ross Young, for graduate school. Shanahan describes her interest in the proton radius puzzle as a research entry point for her thesis work and why she was interested in how particle physics can be connected more rigorously to quarks, gluons, and ultimately chemistry. She describes the opportunities leading to her postdoctoral research at MIT and some of the cultural adjustments she had to make coming from Australia. Shanahan discusses her collaboration with Will Detmold and she describes her contributions to the NPL-QCD research project and she discusses her first faculty appointment at William & Mary before returning to MIT where she remains in her current appointment and where she is pursuing work on proton structures and in creating ever-faster algorithms. She describes the potential benefits that would be conferred with the availability of true quantum computing for her field, and she describes some of the difficulties she has faced as a woman in getting recognized for her accomplishments in her field of research. At the end of the interview, she emphasizes why her long-term goal is to bridge nuclear physics and chemistry, and why she wants to keep an open mind about pursuing other areas that are both interesting and offer the opportunity to push forward discovery in foundational ways.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Henry Tye, professor emeritus of physics at Cornell, and subsequently professor emeritus of physics at Hong Kong University of Science and Technology (HKUST), and currently, Researcher at the Jockey Club Institute for Advanced Study at HKUST. Tye provides a brief history of HKUST, and he offers his views on China’s long-term goals in high energy physics. He recounts his childhood in Hong Kong where his family fled from mainland China during the Communist revolution, and he explains the opportunities that led to his undergraduate admission to Caltech. Tye describes how discussions of the Vietnam War permeated his college experience, and he describes the influence of Gerry Neugebauer on his interest in physics but that cosmology was far from his considerations at that point. He discusses his decision to study at MIT, where Francis Low became his advisor, and how he worked closely with Gabriele Veneziano on the relationship between the Thirring model and bosonic string theory. Tye explains the excitement surrounding the “November Revolution” which was unfolding just as he arrived at the SLAC Theory Group in 1974. He describes the origins of his interests in cosmology, and the source of his collaboration with Alan Guth during his postdoctoral work at Cornell, where he pursued matter-antimatter asymmetry. Tye explains how this collaboration ultimately created the field of inflation and why this addresses fundamental cosmological problems associated with flatness and the horizon. He explains how and why the original theory of inflation was revised by Andrei Linde and Paul Steinhardt, among others, and why he developed a subsequent interest in cosmic superstrings and branes which he recognized would give a perfect model for inflation. Tye describes why he is optimistic that technological advances will make cosmic superstrings a testable proposition, and that collaborations including the Sloan Digital Sky Survey and LIGO/Virgo are positive steps in that direction. He bemoans the dearth of string theorists focused on phenomenological work and why he thinks string theory will solve the quantum gravity problem. Tye describes his decision to join the Cornell faculty, why his notions of a “string landscape” suggest philosophical implications, why the cosmic landscape is central for understanding the wavefunction of the universe, and why both the universe and all multiverses can begin from truly nothing. At the end of the interview, Tye discusses his recent interests on the cosmological constant problem, the KLT relation, and the observations and experiments that are most likely to push cosmology into new and exciting areas of discovery. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Ruth Van de Water, Scientist I at Fermilab. She explains the hierarchical system at the lab to explain her title and she recounts her childhood in Northern Virginia. Van de Water describes her undergraduate experience at William & Mary where she developed an interest in physics and was mentored by David Armstrong, and she describes the considerations that led to her admission to the graduate program at the University of Washington. She discusses her early involvement in the Atlas program and her thesis research that focused on computational and numerical physics and lattice QCD. Van de Water discusses her postdoctoral work at Fermilab, and she describes the state of play regarding the Tevatron and the D0 and CDF collaborations. She describes her ongoing work in lattice QCD research and the opportunity that led to her second postdoctoral position at Brookhaven, where she pursued a new approach to discretizing quarks. Van de Water describes Fermilab “poaching” her back to work on quark flavor physics and become involved in the G-2 experiment. She discusses the negative impact on a decreased budget, and her current leave from Fermilab to be a visiting professor at North Central College, and she shares that she is conflicted about continuing on a strictly research path and focusing more directly on teaching. At the end of the interview, Van de Water discusses the impact of #ShutdownSTEM and the issue of inclusivity in physics and why solutions to under-representation are not easily achievable. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Michael Dine, Professor of Physics at the University of California at Santa Cruz. Dine conveys his provisional excitement over the g-2 muon anomaly experiment at Fermilab and he recounts his childhood in Cincinnati. Dine discusses his undergraduate education at Johns Hopkins, his developing interests in physics, and the opportunity that led to his graduate research at Yale. He describes working under the supervision of Tom Appelquist and trying to understand the force between heavy quarks within quantum chromodynamics. Dine describes his earliest exposure to string theory and his decision to take a postdoctoral appointment at SLAC, where he worked with Jonathan Saperstein on the next order calculation of the total electron-positron cross section. He discusses Lenny Susskind’s work on Technicolor and his subsequent appointment at the Institute for Advanced Study, his close collaboration with Willy Fischler, and the excitement surrounding supersymmetry at the time. Dine describes the impact made by Ed Witten when he arrived in Princeton and he discusses the origins of axion-dark matter research. He discusses his first faculty position at City College in New York and his reaction to the “string revolution” of 1984 and AdS/CFT a few years later. Dine explains his decision to move to UC Santa Cruz and his burgeoning interest in cosmology, he reflects on when his research focused to physics beyond the Standard Model, and he explains why it is possible to decouple the expectation that supersymmetry must be detected at the LHC. He explains why string theory is making strides toward experimental verifiability, and he reflects on the utility of being a theorist. At the end of the interview, Dine emphasizes his optimism about the axion as a dark matter candidate and why the field is moving steadily toward a greater understanding of physics at both the largest and smallest scales.