Inside Science
/
Article

Quantum Fluctuations Near Absolute Zero Visualized for the First Time

AUG 24, 2018
The technique could help scientists better understand why certain materials have the properties they do.
Quantum Fluctuations Near Absolute Zero Visualized for the First Time lead image

Pictured: Quantum fluctuations imaged for the first time.

Beena Kalisky

(Inside Science) -- It looks like static on a TV screen. But the noisy picture is actually something much more exciting to material scientists: the first image of quantum fluctuations -- the driving force behind quantum phase transitions, which affect certain key material properties, such as magnetism and superconductivity, that make many modern-day gadgets possible.

Quantum phase transitions are somewhat like the more familiar classical phase transitions, which occur when we boil water to make steam, or when we melt cheese over a delicious sandwich. Both describe the transition of a material’s property, such as from a solid to a liquid. But while changes in temperature -- or thermal fluctuations -- drive the vaporizing of a liquid or the melting of a solid, quantum phase transitions are driven by quantum fluctuations, which are energy fluctuations that exist everywhere .

To visualize these fluctuations, researchers from the U.S., Russia and Israel used a device known as a Superconducting Quantum Interference Device, or SQUID , to detect the extremely weak magnetic signals from a material that fluctuates between being a superconductor and an insulator when cooled down to near absolute zero. What looks like TV white noise in the image represents the flickering between different quantum phases caused by quantum fluctuations.

The new technique can help researchers better study many fundamental properties of materials, such as why certain materials are magnetic while others are not, or why certain materials are superconductors. The result was published in Nature Physics Aug. 20.

More Science News
/
Article
In the treatment of inflammatory bowel disease, synthetic mucus gels can be used to deliver monoclonal antibodies without inducing broad immunosuppression.
FYI
/
Article
The FAIR model proposed by higher ed associations may be on the table for fiscal year 2027.
APS
/
Article
In an interview, the 2026 APS president outlines his career, his goals for the year, and where he finds optimism in challenging times.
/
Article
Beneath the ice shelves of the frozen continent, a hidden boundary layer of turbulent ocean is determining Antarctica’s fate.
/
Article
/
Article
The availability of free translation software clinched the decision for the new policy. To some researchers, it’s anathema.
/
Article
Lightning is sometimes described as just a big spark. But just how big can the spark get? Satellite sensors say … very!