Electrical engineering

Interviewed by
Joanna Behrman
Interview dates
November 3 & 10, 2020, January 20 & February 9, 2021
Location
Video conference
Abstract

Interview with Janice Button-Shafer, retired American physicist. Button-Shafer recounts her childhood in the Boston area, where her father worked as an engineer. She recalls the influence of her father on her interests in music, math and physics. Button-Shafer discusses her decision to study Engineering Physics at Cornell University, despite it being very uncommon for women to go into science. She discusses her summer jobs at MIT, Cornell Aeronautical Lab and Oak Ridge, as well as her experience writing for The Cornell Engineer magazine. Button-Shafer recounts her Fulbright Fellowship in Germany at the Max Planck Institute in Gottingen, focusing on neutron physics. She reflects on the political landscape during this time and how it affected science in Europe. Button-Shafer then recounts her decision to attend Berkeley for graduate school where she completed her thesis on parity violation while teaching courses such as quantum mechanics. She describes her research at the time at Lawrence Berkeley Lab and SLAC and discusses her work on thermonuclear energy and fusion reactors. She then turns to her move to University of Massachusetts Amherst and her eventual retirement and continuation of work at SLAC. Button-Shafer also talks about her marriage to mathematician John Shafer and the challenges of raising three children, one of whom battled cancer, during her demanding career as a scientist. Throughout the interview, Button-Shafer shares numerous anecdotes about the struggles of being a woman in a male-dominated field, including the discrimination and misogyny she endured throughout her career. She shares many stories of famous physicists she worked with over the years, including Owen Chamberlain, Emilio Segre, Luis Alvarez, Karl Heinz Beckhurts, and Edward Teller. Button-Shafer also shares her passion for the history of physics and relays many of her favorite historical tidbits involving scientists such as Lise Meitner, Marie Curie, Werner Heisenberg, and others. Her love of chamber music and classical music also comes up throughout the interview, as she reflects on her various musical accomplishments.

Interviewed by
Michael Duncan
Interview date
Location
Great Bealings, Suffolk, England
Abstract

Interview with John Midwinter OBE, British electrical engineer and professor. The interview begins with reflections from Midwinter’s childhood in England and his early knack for building things. He describes his initial plans to attend agricultural college, but first had to complete two years of military service. He served in the Royal Air Force where he was introduced to radar, leading him to pursue physics and electronics in university. Midwinter describes his time at King’s College London and his decision to join the Scientific Civil Service upon graduation, wherein he was placed at the Royal Radar Establishment in Malvern. There, Midwinter recalls focusing on nonlinear optics and completing his PhD while there. He discusses the offer he accepted from Perkin Elmer and his subsequent move to the US, where he met and worked with Frits Zernike. Midwinter then spent a short time at Allied Chemical in New Jersey, helping to build up their new Materials Research Center. He discusses moving back to England to work at British Telecom Research Labs, where he shifted into working on optical fiber communications. He describes the differences between research companies in the US and the UK, and the importance of conferences he attended during this time, such as the Optical Fiber Conference and European Conference on Optical Communication (ECOC). Midwinter then recalls his new position at University College London, his transition away from fiber, and his interest in optical computing. He reflects on the administrative roles he found himself in within academia, as well as the pride he felt being elected a Fellow of the Royal Society and being awarded OBE. The interview concludes with Midwinter’s recollections of the two successful books he wrote and his experience as a longtime member of the Institute of Electrical Engineers (IEE). 

Interviewed by
Michael Duncan
Interview date
Location
San Diego, California
Abstract

Interview with Jim Hsieh, founder of Sheaumann Laser, Inc. The interview begins with Hsieh describing his childhood in China during turbulent times and his family’s move to Taiwan where he completed secondary school and college. He discusses his decision to pursue graduate school in the US at Virginia Tech and his subsequent time working at Westinghouse in the Molecular Electronics Division in Baltimore. Hsieh then continued his education first at UC Berkeley and then moved to the University of Southern California. He recalls some of the early patents he contributed to, related to circuit design and semiconductors. Hsieh describes his move to MIT Lincoln Lab where he worked under John Goodenough. He discusses the beginnings of fiber optic communication, and describes the technical aspects of his research at the time on topics such as gallium arsenide lasers, laser diodes, and quarternary lasers. Hsieh talks about his decision to start his own company, Lasertron, with Kenneth Nill, and reflects on the transition from a purely research environment to a business endeavor. He discusses witnessing the growth of the laser market and the international landscape of laser development at the time. The interview concludes with Hsieh describing the sale of Lasertron to Oak Industry and the creation of Sheaumann Laser, Inc.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Naomi Ginsberg, Associate Professor of chemistry and physics at University of California, Berkeley and faculty scientist at Lawrence Berkeley Lab. The interview begins with Ginsberg discussing her multidisciplinary background in science and how she prefers not to draw boundaries between research fields. She talks about how the Covid-19 pandemic has affected her research and the science community in general. Then Ginsberg turns to her childhood in Canada and recalls being a curious child with many interests. She describes her undergraduate studies in engineering at the University of Toronto and her summers of research at the Institute for Biodiagnostics, which is where she became seriously interested in physics. Ginsberg discusses pursuing a PhD at Harvard University under Lene Hau, where she worked on ultraslow light in Bose-Einstein condensates and superfluid dynamics. She then talks about wanting to switch gears toward biophysics and choosing to go to LBL for a post-doc in photosynthesis work. Ginsberg describes accepting her current position at Berkeley and the different cultures between the chemistry and physics departments. Towards the end of the interview, she touches on her DARPA grant for research on organic semiconductors, as well as the advances in technology that have informed and shaped her research over the years. Ginsberg looks back on the many grad students she has mentored and points to open-mindedness and confidence as key characteristics for their success.

Interviewed by
Richard J. Peppin
Interview date
Location
Video conference
Abstract

In this interview, Chuck Ebbing discusses his career and involvement with the Acoustical Society of America (ASA). Ebbing discusses his time at Purdue University as an undergraduate student where he studied electrical engineering. He details his time working at Carrier and his work designing anechoic rooms. He speaks about his time in the U.S. Army and his experience attending guided missile school. Ebbing discusses getting his master’s degree at the Cornell Aeronautical Lab where he built and designed a magnetostrictive transducer. He describes his time as a member of ASA where he worked on a standard regarding air conditioning measurements. Lastly, Ebbing discusses his displeasure with ASA’s lack of encouragement for creativity. 

Interviewed by
David Zierler
Interview dates
May 24, 25 & 26, 2021
Location
Video conference
Abstract

In this interview, Brandon Sorbom, Chief Science Officer at Commonwealth Fusion Systems, discusses the development of his company and interest in nuclear fusion. Sorbom speaks about his time as an undergraduate student at Loyola Marymount University where he majored in Electrical Engineering and Physics and how he discovered his interest in fusion during this time. He describes how his interest in nuclear fusion led him to pursue graduate school at MIT. He details his time as a graduate student working at the MIT Plasma Science and Fusion Center, as well as his experience working with his advisor Dennis Whyte. Sorbom discusses how he first became involved in the development of SPARC, whose goal is to generate net energy from fusion, during his time at MIT. He details the variety of investors for his company and the roles he and his cofounders take on within CSF. Sorbom explains CSF’s current project of demonstrating that superconducting magnets at high fields can be used in fusion. Lastly, Sorbom discusses how fusion energy will likely become the dominant form of energy in the future and how it can help combat climate change.

Interviewed by
David Zierler
Interview dates
June 29, July 5, July 19, July 26, August 2, August 9, August 16, 2020
Location
Video conference
Abstract

Series of seven interview sessions with Carver Mead, Gordon and Betty Moore Professor Emeritus at Caltech. Mead recounts his childhood in California, and he describes the impact of watching his father’s career in the electric power industry. He credits his schoolteachers for encouraging his early interests in math and science, and he explains why attending Caltech as an undergraduate was an easy choice for him because he felt immediately welcomed during his first visit. He describes what it was like to learn quantum mechanics from Linus Pauling, and he explains that his decision to major in electrical engineering stemmed from the fact that applied physics was shunned in the physics department because Murray Gell-Mann referred to it as “squalid state physics.” Mead describes his decision to stay at Caltech for graduate school, and he explains how he became interested in semiconductors and transistors and what would become the origins of “device physics” and how his dissertation research contributed to these developments. He describes his developing understanding that the future of electronics would be in low power, high-performance devices and why he would be best positioned to foster this future as a faculty member at Caltech. Mead describes his collaborations and interest in industry labs including IBM, RCA, and Bell, and he describes his initial and then longtime work with Gordon Moore. He discusses the value of RF transmitters in 1960s-era communications technology and the prospects of satellite telecommunications at the dawn of the space age. Mead describes the origins of VSLI technology, word processors, and microcomputers, and he describes his collaboration with Lynn Conway and the process that went into the classic textbook they coauthored. He describes his research using the human mind as a source of inspiration to push electronics and microprocessors to the next level, and he explains the value of bouncing ideas off of Feynman over lunch. Mead describes the singular potential of his student and collaborator Misha Mahowald, and the value of his work with Arnold Beckman. He discusses the several companies that were spun out of his research in electronics and biophysics, and he describes his work on cameras with Michihiro Yamaki and the learning curve associated with research culture in Japan. Mead offers his perspective on the need to update the debates between Einstein and Bohr in the wake of recent developments in physics, and he explains the intellectual origins of his text Collective Electrodynamics. He explains why scientific debates can take on philosophical or even religious dynamics, and he discusses the origins of G4V and how to think of gravitational attraction as an analogy to electromagnetic interaction. Relatedly, Mead describes his work with Kip Thorne and his involvement with the LIGO endeavor, and he explains why the line between science and engineering is fuzzier than is commonly understood. He explains the significance of the Shapiro Delay, he surmises that the mystery of Dark Energy is sourced in the fact that physics is approaching the problem in the wrong way, and he explains why physics has become hamstrung in its pursuit of mathematizing physical reality ahead of experimental guidance. Mead explains that his views are rooted in his ability to think in pictures, as opposed to abstract symbols, and that the field needs to be more welcoming and inclusive to those who may see math as a barrier to working in physics at a high level. At the end of the interview, Mead describes his interest in current challenges with electric grid infrastructure, he explains why he has championed the work of women in science throughout his career, and he strikes an optimistic note that science always has and will continue, to provide solutions to the world’s most pressing problems.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Thomas Mason, professor of chemistry and biochemistry at UCLA. Mason recounts his childhood in Frederick, MD, and he describes the influence of his father, who was a zoologist. Mason discusses his undergraduate education at the University of Maryland where he pursued a dual degree in physics and electrical engineering, and he describes the opportunity that led to his graduate work at Princeton. He explains his work at Exxon Research and Engineering Lab, where he worked with Dave Weitz, and he describes the growth of soft matter condensed physics. Mason discusses his dissertation in micro-rheology and some of the broader questions in Brownian systems when colloids are micro-dispersed. He describes his postdoctoral work in France with Jerome Bibette, where he focused on the science of emulsification, and he discusses his senior postdoctoral position at Johns Hopkins, where he worked with Scot Kuo who was concentrating on the rheology of concentrated DNA. Mason explains his decision to join Exxon as a principal investigator, where he researched asphaltenes, and he discusses some of the broader advances in soft matter physics fostered at the Exxon lab. He describes his motivations for returning to academia, and in particular his desire to teach, he explains the opportunity leading to his tenure at UCLA, and he describes his contributions to the NanoSystems Institute. Mason discusses his involvement in many of the clinical and therapeutic aspects of soft matter physics, and at the end of the interview, he offers insight on where his broad interests in platform technologies might be relevant as his field continues to grow.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Mansour Shayegan, Professor of Electrical Engineering at Princeton. Shayegan recounts his family roots in Isfahan, and the political and social dynamics of growing up in Iran. He explains his decision to pursue an undergraduate education in the United States and the opportunities leading to his enrollment at MIT as an undergraduate. He describes his decision to stay at MIT for graduate school and his experiences in the electrical engineering program, where he worked with his advisor Millie Dresselhaus, during the Iranian Revolution. Shayegan describes Dresselhaus’s reputation as the “Queen of Graphite” and he describes the impact of her research on his dissertation on graphite intercalation. He discusses some of the commercial potential of his graduate research and emphasizes his primary interest in basic research and describes his postdoctoral work at the University of Maryland. He explains the origins of his interest in semiconductor physics in collaboration with Bob Park and Dennis Drew, and he describes the events leading to his faculty appointment at Princeton. Shayegan describes the work involved getting his lab and the MBE system set up, and he discusses the excellent culture of collaboration in both the physics and EE programs at Princeton. He explains recent advances in superconductivity research, and he reflects on the success he has enjoyed as a mentor to graduate students over the years. Shayegan expresses his pleasure in teaching quantum mechanics to undergraduates, and he explains his long-term interest in research on gallium arsenide. At the end of the interview, Shayegan reflects on his contributions to the field, its intellectual origins in the prediction of Bloch ferromagnetism, and the importance of securing the ongoing support from the National Science Foundation.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Piero Pianetta, Research Professor in the Photon Science Department, joint with Electrical Engineering, at Stanford. He recounts his family’s Italian heritage, and his upbringing in Italy and then in California. He explains his interest in pursuing physics as an undergraduate at Santa Clara University, and his graduate work at Stanford where he worked on monochromator experiments and contributed to the SPEAR collaboration at SLAC. Pianetta discusses his scientific interests converging on surface science and the influence of Seb Doniach on his research. He describes his postgraduate work at HP where he focused on laser annealing and subsequently SSRL to conduct research on device technology and photoemission techniques. Pianetta explains how SSRL became integrated in SLAC and how he became administratively housed in the Photon Science department, and how this development is illustrative of the way SLAC has diversified its research and redefined its relationship with the Department of Energy. He describes his most recent responsibilities as chair of the photon science group at SLAC and his current work chairing the laboratory promotions committee. At the end of the interview, Pianetta reflects on the long-term impact of remote work for SLAC generally and he conveys optimism on improving SSRL’s long-term capabilities.