Antiferromagnetism

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Subir Sachdev, Herchel Smith Professor of Physics at Harvard University. Sachdev surveys his current research projects which includes a focus on Planckian metals and the Sachdev-Ye-Kitaev model, and he describes the interplay between theory and experiment on the topics he is following most closely. He describes the major advances in spin liquids research, and he recounts his childhood and Jesuit education in Bangalore. Sachdev discusses his undergraduate education at the Indian Institute of Technology and he explains the circumstances that led to his family’s emigration to the United States and his transfer to MIT where Dan Kleppner was a formative influence. He explains his decision to move to Harvard for graduate school, where David Nelson supervised his thesis research related to Nelson’s interests in developing the theory of the structure of metallic glasses. Sachdev describes his postdoctoral work on quantum spins and antiferromagnets at Bell Labs, and research advice he received from Bert Halperin. He explains his decision to join the faculty at Yale, he describes his key collaborations with Nick Read on quantum antiferromagnets and he narrates his increasing interest in cuprates. Sachdev discusses his decision to write Quantum Phase Transitions and he describes the origins of the SYK model and its relevance for black hole research. He discusses his involvement in string theory and his longstanding interests in Bose-Einstein condensation. Sachdev narrates his decision to transfer to Harvard and he describes his work in quantum chaos. He describes his professorship at the Tata Institute and the meaningfulness of being able to travel to and maintain contacts in India. At the end of the interview, Sachdev explains open issues in the theory of pseudo-gap in the high-temperature superconductors, how the SYK model may contribute to the development of a theory of quantum gravity, and he provides a long-range view of developments in the field of strange metals.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Raymond Orbach, professor of physics emeritus at the University of Texas at Austin. Orbach recounts his childhood in Los Angeles, his early interests in chemistry, and his undergraduate experience at Caltech. He discusses his graduate work at Berkeley on integral equations and his research at Bell Labs and at Oxford where he worked on resonance relaxation. Orbach explains his research agenda at UCLA, including his work on magnetic resonance and the antiferromagnetic ground state. He discusses his work as chancellor of UC Riverside and his ability to keep up research while working in administration. Orbach recounts the circumstances leading to him becoming director of science at DOE and his “dual-hatted” work as Undersecretary of Science for DOE. He provides an overview of the state of high energy physics in the early 2000s and the long-term affect of the SSC cancellation. In the final part of the interview, Orbach talks about his research on energy issues at superconducting quantum interference devices at UT. 

Interviewed by
P. Coleman, P. Chandra and S. Sondhi
Interview date
Abstract

Anderson discusses his interest in Complexity and Physics of Information; the Santa Fe Institute; his doubts about DCS theory of superconductivity and theory of A15s; resonation valence bond ideas; political involvement from local issues to Star Wars defense. Other topics include: ferromagnetism; Ginzburg-Landau theory; Josephson effect; magnetism; military research in the United States; solid state physics; solid state physics in Japan; spin glasses; superconductivity; and spin lattice relaxation.

Interviewed by
P. Coleman, P. Chandra, and S. Sondhi
Interview date
Abstract

Covers the gradual move from Bell Labs to Princeton, at first part time then full; discusses work on spin glass problem and ramifications for optimization theory and neural networks; reaction to Nobel Prize; return to localization and Gang of Four paper; thoughts on mixed valance problem and heavy electron systems.

Interviewed by
P. Chandra, P. Coleman, and S. Sondhi
Interview date
Abstract

Anderson discusses the theory of superfluid Helium-3; recalls germination of the idea and eventual publication of "More is Different"; reviews work on topological defects; discusses motivation for resonation valence bond work with Fazekas; talks about interaction with Lee and Rice on charge density waves; recalls foray into astrophysics with Pines and Alpar and theory of pulsars glitches.

Interviewed by
P. Chandra, P. Coleman and S. Sondhi
Interview dates
October 15, October 29, and November 5, 1999
Abstract

Interview focuses briefly on personal details of Philip Anderson's life and almost exclusively on technical aspects of Anderson's research. After discussing his undergraduate and graduate education at Harvard including his research on spectral lines, he begins the technical aspects of the interview by reviewing his interest in anti-ferromagnetism and his time in Japan. Included in this are his thoughts on the organization of the Japanese scientific community. The second half of the interview deals entirely with his interest in superconductivity and localized moments. Within this general topic there is some treatment of his thoughts on the time that he spent in Cambridge, MA.