Condensed matter

Interviewed by
David Zierler
Interview dates
February 26 and March 12, 2021
Location
Video conference
Abstract

Interview with John Preskill, Richard P. Feynman Professor of Theoretical Physics at Caltech, and Director of the Institute for Quantum Information and Matter at Caltech. Preskill describes the origins of IQIM as a research pivot from the initial excitement in the 1970s to move beyond Standard Model physics and to understand the origin of electroweak symmetry breaking. He emphasizes the importance of Shor’s algorithm and the significance of bringing Alexei Kitaev into the project. Preskill discusses the support he secured from the NSF and DARPA, and he recounts his childhood in Chicago and his captivation with the Space Race. He describes his undergraduate experience at Princeton and his relationship with Arthur Wightman and John Wheeler. Preskill explains his decision to pursue his thesis research at Harvard with the intention of working with Sidney Coleman, and he explains the circumstances that led to Steve Weinberg becoming his advisor. He discusses the earliest days of particle theorists applying their research to cosmological inquiry, his collaboration with Michael Peskin, and his interest in the connection of topology with particle physics. Preskill describes his research on magnetic monopoles, and the relevance of condensed matter theory for his interests. He explains the opportunities that led to his appointment to the Harvard Society of Fellows and his eventual faculty appointment at Harvard, his thesis work on technicolor, and the excitement surrounding inflation in the early 1980s. Preskill discusses the opportunities that led to his tenure at Caltech and why he started to think seriously about quantum information and questions relating to thermodynamic costs to computing. He explains the meaning of black hole information, the ideas at the foundation of Quantum Supremacy, and he narrates the famous story of the Thorne, Hawking, and Preskill bets. Preskill describes the advances in quantum research which compelled him to add “matter” to the original IQI project which was originally a purely theoretical endeavor. He discusses the fact that end uses for true quantum computing remain open questions, and he surveys IQIM’s developments over the past decade and the strategic partnerships he has pursued across academia, industry, and at the National Labs. Preskill surveys the potential value of quantum computing to help solve major cosmological mysteries, and why his recent students are captivated by machine learning. At the end of the interview, Preskill reflects on his intersecting interests and conveys optimism for future progress in understanding quantum gravity from laboratory experiments using quantum simulators and quantum gravity.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Charles Kane, Christopher H. Browne distinguished professor in the Department of Physics and Astronomy at the University of Pennsylvania. Kane surveys the interplay of theory and experiment in condensed matter over the course of his career, and he recounts his childhood in Iowa City, where his father was a professor of civil engineering. He discusses his undergraduate work at the University of Chicago, and the formative influence of Tom Rosenbaum on his interest in theory. Kane describes his graduate research at MIT under the direction of Patrick Lee to focus on mesoscopic physics, and he conveys the excitement surrounding High Tc. He discusses his postdoctoral work at IBM to focus on free-floating theory and he explains the exciting prospect of joining Penn which had a strong condensed matter group. Kane describes Steve Girvin’s role in introducing him to the quantum Hall effect and his key collaboration with Matthew Fischer on calculating electrical conduction when a one-dimensional conductor has a weak link in it. He discusses his subsequent interest in carbon nanotubes and graphene and his realization that graphene should have an energy gap. Kane describes the feeling in winning both the Dirac and Buckley prizes and he discusses advances in the phenomenology of topological insulators. He explains the controversy surrounding Majorana modes and he discusses the recognition by the Breakthrough Prize for his work in topology and symmetry. At the end of the interview, Kane reflects on the growth of his department at Penn and he explains why improved applications of quantum mechanics and improved understanding of quantum mechanics must progress in tandem.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Moty Heiblum, Professor of Condensed Matter Physics at the Weizmann Institute in Israel. Heiblum discusses his current work in mesoscopic physics and he reflects broadly on the interplay between theory and experiment in condensed matter. He recounts his family's travails in Europe during World War II and he discusses his childhood outside Tel Aviv. Heiblum describes his military service during the Six Day War and his education at Technion. He explains his interest in focusing on integrated optics for graduate school, and he describes the convoluted path that led to his research at UC Berkeley. Heiblum talks about his postdoctoral transition to solid state research at IBM Labs, and he explains his decision to return to Israel and to build up a solid-state program at the Weizmann. He describes his longstanding interest in the quantum Hall effect and his fascination with turning electrons "on and off." Heiblum discusses his group's contributions to quasiparticle research and he reflects on receiving the Buckley Prize. At the end of the interview, Heiblum conveys his motivations in building devices, he describes the "eureka" moments in his career, and he explains his future focus on exploring the possibilities of working with gallium arsenide.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with John Martinis, professor of physics at UC Santa Barbara. Martinis gave the interview from Australia, where he was consulting for Silicon Computing following his affiliation with Google’s efforts to build a quantum computer. He surveys the current state of play toward that goal, and explains what applications quantum computing can serve, and how the field is clarifying the technological requirements to achieve a quantum computer. Martinis recounts his childhood in Los Angeles, his early interests in computers, and his undergraduate experience at Berkeley where he gravitated toward experimental physics. He describes his interactions with John Clarke and his motivations to stay at Berkeley for graduate school, where he focused on SQUIDS and was captivated by Tony Leggett’s ideas on quantum tunneling. Martinis explains his interest in working with Michel Devoret at Saclay for his postdoctoral research, where there was much excitement over high Tc and YBCO materials. He describes his subsequent work at NIST and his decision to join the faculty at Santa Barbara around the time he became focused on quantum computing. Martinis narrates the technological challenges of building qubits and error correction, and he explains how he got involved with Google and joined his style with its research culture. He describes his role as chief scientist in the collaboration and why his vision and Google’s diverged. Martinis addresses the issue of “hype” in quantum computing. At the end of the interview, Martinis emphasizes the centrality of systems engineering to his research agenda, and he explains why quantum supremacy will demonstrate the need for quantum computing and the limitations of classical computing.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Philip Phillips, Professor of Physics at the University of Illinois Urbana-Champaign. Phillips recounts his early childhood in Tobago and the circumstances of his family’s move to Washington State. He conveys his bemusement at having no degree in physics, as his graduate work at the University of Washington was in chemistry, where he completed a PhD on fluorescence lifetimes in single molecules under the direction of Ernest Davidson, and where David Boulware provided the intellectual entrée to physics. Phillips explains the opportunities that allowed him to pursue postdoctoral work at Berkeley and learning RG from Orlando Alvarez. He describes his first faculty position in the chemistry department at MIT, some of the research challenges given that his primary interests were in physics, and his feeling that MIT was at the time not a very inclusive atmosphere. Phillips discusses his work on the random dimer model and the happenstance opportunity that led to his faculty appointment at Illinois. He explains getting involved with the National Society of Black Physicists and his efforts to make the department more diverse. Phillips describes the research that was recognized by the Edward Bouchet award and why Tony Leggett is among the few physicists who truly understands Mottness. He discusses advances in strongly coupled electron systems and he explains why he dislikes the term condensed matter and prefers solid-state. Phillips reflects on STEM’s response to the racial strife over the past year, and he discusses his current interests in pseudogaps. At the end of the interview, Phillips conveys his dream to solve the Hubbard model and to make advances in high-Tc research.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Subir Sachdev, Herchel Smith Professor of Physics at Harvard University. Sachdev surveys his current research projects which includes a focus on Planckian metals and the Sachdev-Ye-Kitaev model, and he describes the interplay between theory and experiment on the topics he is following most closely. He describes the major advances in spin liquids research, and he recounts his childhood and Jesuit education in Bangalore. Sachdev discusses his undergraduate education at the Indian Institute of Technology and he explains the circumstances that led to his family’s emigration to the United States and his transfer to MIT where Dan Kleppner was a formative influence. He explains his decision to move to Harvard for graduate school, where David Nelson supervised his thesis research related to Nelson’s interests in developing the theory of the structure of metallic glasses. Sachdev describes his postdoctoral work on quantum spins and antiferromagnets at Bell Labs, and research advice he received from Bert Halperin. He explains his decision to join the faculty at Yale, he describes his key collaborations with Nick Read on quantum antiferromagnets and he narrates his increasing interest in cuprates. Sachdev discusses his decision to write Quantum Phase Transitions and he describes the origins of the SYK model and its relevance for black hole research. He discusses his involvement in string theory and his longstanding interests in Bose-Einstein condensation. Sachdev narrates his decision to transfer to Harvard and he describes his work in quantum chaos. He describes his professorship at the Tata Institute and the meaningfulness of being able to travel to and maintain contacts in India. At the end of the interview, Sachdev explains open issues in the theory of pseudo-gap in the high-temperature superconductors, how the SYK model may contribute to the development of a theory of quantum gravity, and he provides a long-range view of developments in the field of strange metals.

Interviewed by
David Zierler
Interview dates
June 4, June 18, June 30, and July 8, 2020
Location
Video Conference
Abstract

In this interview, Paul Steinhardt, the Albert Einstein Professor in Science at Princeton, recounts his childhood in Miami and his undergraduate experience at Caltech, where he became interested in theoretical physics and where Feynman played a key influence on his development. He surveys where physics is stuck and compares similar challenges that both string theory and inflation are facing, and he explains his reasons for going to Harvard for his graduate work. Steinhardt describes being a student of Sidney Coleman’s and his focus on gauge theories. He discusses his postgraduate work at IBM Research and as a Junior Fellow at Harvard, and he explains the opportunity that led to his faculty appointment at the University of Pennsylvania. Steinhardt describes his increasing interest in cosmology and the influence of Alan Guth. He explains his dual interest in condensed matter physics and where he saw commonality with his cosmological research. Steinhardt conveys the importance of his collaboration with Dov Levine and he explains why he thinks the notion of a multiverse is nonscientific but not necessarily impossible. He explains his focus on quasicrystals for a time at the exclusion of cosmology, and the circumstances leading to his decision to join the faculty at Princeton which was a central point for research on the cosmic wave background. Steinhardt discusses his work on dark energy and the cosmological constant and his related interactions with Michael Turner. He describes his efforts to link the mystery of the Big Bang with the physics that can be understood after the beginning of the universe, and why the notion of the universe having a clear beginning is problematic. Steinhardt describes his frustration with string theorists who are working on abstract rather than existential research problems, and he surveys the technological advances that could make some of the intractable puzzles in cosmology testable, including the bouncing model of cosmology. He relates an epic story of mineral mining in pursuit of earthly quasicrystals, and at the end of the interview, Steinhardt describes his search for good puzzles as the common thread that connects all of his research. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Paul Chaikin, Silver Professor of Physics at NYU, recounts his childhood in Brooklyn and he describes his early interests in math and science and his education Stuyvesant High School. He discusses his undergraduate education at Caltech, he conveys how special it was to learn from Feynman and Pauling, and he explains the fields that would go on to form his area of specialty, soft matter physics. Chaikin explains his reasoning to pursue a graduate degree with Bob Schrieffer at Penn, where he did his thesis research on the Kondo effect in superconductors. He describes his first postgraduate work at UCLA where he developed an expertise in thermoelectric power, and he describes the intellectual and technological developments that paved the way for the creation of soft matter physics as a distinct field. Chaikin explains what it would take to solve the many-body problem of nonequilibrium phenomena, and he describes the delicate nature of collaborating with biologists while ensuring they don’t overtake the field. He discusses his joint appointment with Penn physics and the research laboratory at Exxon, and he explains his move to Princeton, which was just starting to develop a program in soft matter physics. Chaikin describes the famous experiment that discovered that M&M shapes (ellispoids) provided the most efficient and minimal negative space in packing applications, and he explains his decision to join the faculty at NYU. At the end of the interview, Chaikin reflects on some of the remaining mysteries in the field, and he describes his interest in pursing research on self-assembly among soft condensed matters.  

 

Interviewed by
David Zierler
Interview date
Location
Remote Interview
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Dan Neumann, Group Leader for Neutron Condensed Matter Science at the NIST Center for Neutron Research. Neumann recounts his childhood growing up on a farm in Nebraska and later on in Arizona. He discusses his undergraduate experience at Arizona State and his developing interest in condensed matter physics. Neumann describes his graduate work at the University of Illinois, and he describes his lab work, his AT&T fellowship and research at Bell Labs, and his dissertation work under the direction of Hartmut Zabel. He explains the circumstances leading to his appointment at NIST, and he describes the value of neutron scattering as a means of understanding materials at atomic, nanoscale levels. Neumann describes how neutron scattering fits within the overall mission of NIST, and he explains NIST's support for basic science and why its laboratories have attracted a wide array of researchers. He explains how neutron scattering is the key to developing new materials for both research and commercial applications. Neumann describes some of the key interagency partnership that have advanced neutron scattering research, and he explains some recent projects he has been involved in, including hydrogen fuel cell research, dynamic work on proteins, and pharmaceutical work. At the end of the interview, Neumann describes how closely his work at NIST has been integrated within the broader physics community.

Interviewed by
David Zierler
Interview dates
July 17 and July 22, 2020
Location
video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Shirley Ann Jackson, President of Rensselaer Polytechnic Institute. Jackson recounts her family heritage and describes her upbringing in Washington DC and her early experiences attending segregated schools and visiting the Smithsonian museums. She considers some of the opportunities that came with being high school valedictorian, and she describes the circumstances leading to her undergraduate admission at MIT. Jackson discusses the discrimination she encountered during college and describes her experience amid campus protests against the Vietnam War. She describes her undergraduate thesis on tunneling density states in superconducting niobium-titanium alloys, and she explains why the assassination of Martin Luther King, Jr. was central to her decision to remain at MIT for graduate school. Jackson describes her thesis research officially under the direction of Jim Young but in reality more with Roman Jackiw. She discusses her experience as a postdoctoral researcher Fermilab, where she continued her thesis research on one-particle inclusive reactions, and then CERN, where she worked as a fellow of the Ford Foundation, and from which she used as a home base to travel in Europe. Jackson describes her subsequent work at Bell Labs where she focused on the electronic and optical properties of layered materials. She explains her decision to join the faculty at Rutgers University and she describes the moment not long after when President Clinton asked her to become the Chairman of the Nuclear Regulatory Commission. Jackson recounts the history and structure of the NRC and she shares her views on the role of nuclear power as an energy sources and as part of the solution for climate change. She describes the interplay between regulation and private industry from her vantage point of leading the NRC and the responsibility of ensuring safety in the civilian nuclear energy industry. Jackson discusses her work as a board member of the New York Stock Exchange, and she explains the circumstances that led to her being named President of RPI. She describes the process for establishing a mandate and a vision for the university as she assumed leadership. Jackson discusses her work in the Obama administration as a member of PCAST and the President’s Intelligence Advisory Board, and she explains why as president of a university it is important not to get caught up in the political controversies of any particular day. She shares her views on the importance of diversity and inclusivity in higher education and she describes how RPI has dealt with broader issues of racial justice in 2020. Jackson discusses her work on Governor Andrew Cuomo’s coronavirus task force, and what she has learned from the pandemic. She describes why being awarded the National Medal of Science is so important to her personally and she reflects on her contributions in physics, and particularly on the properties of unique two-dimensional systems. At the end of the interview, Jackson describes her central focus on guiding RPI through the pandemic and championing environmental issues.