News & Analysis
/
Article

Structural changes in liquids at high pressures can be observed by shock compression

DEC 27, 2019
By shock compressing tin to extreme conditions, researchers studied how its liquid properties evolved -- a first step towards understanding the structure of molten materials surrounding planetary cores.
Structural changes in liquids at high pressures can be observed by shock compression internal name

Structural changes in liquids at high pressures can be observed by shock compression lead image

Though the mantle and outer core materials within the Earth are composed of liquids compressed at very high pressures, little is known about the structure of materials in these extreme conditions. Using high power laser pulses, Briggs et al. shock-compressed tin, an ideal element that melts at much lower pressures and temperatures than the mantle material, into its liquid phase and studied its structural changes.

The authors found that, with increasing pressure, the tin changes phase from a complex fluid to a simple fluid. The coordination number of the liquid, or the number of neighbors each of its atoms has, increases from about seven to up to 12.

“In a liquid, the changes in coordination number can be used to identify similar changes in the liquid structure and can help obtain information such as density or viscosity,” said author Richard Briggs. These properties are important for understanding the heat flow away from the inner planetary core and the nature of outer core convection, which is responsible for the Earth’s magnetic field.

Because shock compression can help the liquid reach very high pressure and temperature states that traditional techniques cannot achieve, the researchers generated shock within a tin sample using 15-nanosecond laser pulses. They conducted X-ray diffraction measurements to probe the structure of the sample and determined the coordination number of the shocked material.

Briggs noted that this approach paves the way to obtaining information about liquid structures at pressures relevant for studying planetary core compositions. “This work lays down a pathway to obtaining density of liquids, under shock compression, directly from the X-ray scattering data, a long-standing goal in our field,” he said.

Source: “Coordination changes in liquid tin under shock compression determined using in situ femtosecond X-ray diffraction,” by R. Briggs, M. G. Gorman, S. Zhang, D. McGonegle, A. L. Coleman, F. Coppari, M. A. Morales-Silva, R. F. Smith, J. K. Wicks, C. A. Bolme, A. E. Gleason, E. Cunningham, H. J. Lee, B. Nagler, M. I. McMahon, J. H. Eggert, and D. E. Fratanduono, Applied Physics Letters (2019). The article can be accessed at https://doi.org/10.1063/1.5127291 .

Related Topics
More Science
/
Article
Review considers how biomaterials could aid in the study and treatment of wounds in aged skin.
/
Article
The protein survivin regulates the movement of smooth muscle cells, offering a potential pathway for treating cardiovascular disease.
/
Article
Using a combination of slurry and gas-phase silicon evaporation methods, researchers have developed a high-density protective ceramic coating.
/
Article
A clean, smooth interface between a gallium oxide semiconductor and palladium electrodes enhances the performance of solar-blind ultraviolet photodetectors.